Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
Prochaine révision Les deux révisions suivantes
fr:research:models-computation [2021/04/05 17:00]
apeiron
fr:research:models-computation [2021/04/05 17:05]
apeiron PLoopC
Ligne 48: Ligne 48:
   * [[fr:​research:​fi-while|Algorithmic Completeness of Imperative Programming Languages]] (Yoann Marquer), accepté par Fundamenta Informaticae en 2016   * [[fr:​research:​fi-while|Algorithmic Completeness of Imperative Programming Languages]] (Yoann Marquer), accepté par Fundamenta Informaticae en 2016
   *  [[fr:​research:​ploopc|Imperative Characterization of Polynomial Time Algorithms]] (Yoann Marquer, Pierre Valarcher), publié en 2016 dans Developments in Implicit Computational Complexity, volume 3, pages 91 - 130   *  [[fr:​research:​ploopc|Imperative Characterization of Polynomial Time Algorithms]] (Yoann Marquer, Pierre Valarcher), publié en 2016 dans Developments in Implicit Computational Complexity, volume 3, pages 91 - 130
 +
 +====== While ======
 +
 +**Algorithmic Completeness of Imperative Programming Languages** (Yoann Marquer) est un article directement issu de [[fr:​research:​thesis-defense|mes travaux de thèse]], et qui a été accepté par Fundamenta Informaticae en 2016.
 +
 +===== Abstract =====
 +
 +According to the Church-Turing Thesis, effectively calculable functions are functions computable by a Turing machine. Models that compute these functions are called Turing-complete. For example, we know that common imperative languages (such as C, Ada or Python) are Turing complete (up to unbounded memory).
 +
 +Algorithmic completeness is a stronger notion than Turing-completeness. It focuses not only on the input-output behavior of the computation but more importantly on the step-by-step behavior. Moreover, the issue is not limited to partial recursive functions, it applies to any set of functions. A model could compute all the desired functions, but some algorithms (ways to compute these functions) could be missing (see ((Loïc Colson: "About primitive recursive algorithms",​ Theoretical Computer Science 83 (1991) 57–69)) and ((Yiannis N. Moschovakis:​ "On Primitive Recursive Algorithms and the Greatest Common Divisor Function",​ Theoretical Computer Science (2003) ))) for examples related to primitive recursive algorithms).
 +
 +This paper'​s purpose is to prove that common imperative languages are not only Turing-complete but also algorithmically complete, by using the axiomatic definition of the Gurevich'​s Thesis and a fair bisimulation between the Abstract State Machines of Gurevich (defined in ((Yuri Gurevich: "​Sequential Abstract State Machines Capture Sequential Algorithms",​ ACM Transactions on Computational Logic (2000) ))) and a version of Jones' While programs. No special knowledge is assumed, because all relevant material will be explained from scratch.
 +
 +**Keywords**:​ Algorithm, ASM, Completeness,​ Computability,​ Imperative, Simulation.
 +
 +===== Versions =====
 +
 +The {{:​fr:​research:​fi-while-short.pdf|short version}} of the paper had been submitted to [[http://​fi.mimuw.edu.pl/​index.php/​FI|Fundamenta Informaticae]].
 +
 +The {{:​fr:​recherche:​fi-while-long.pdf|long version}} is an older version, with very poor english and presentation,​ but contains proofs omitted in the short version.
 +
 +
 +====== PLoopC ======
 +
 +**An Imperative Language Characterizing PTIME Algorithms** (Yoann Marquer, Pierre Valarcher) est un article directement issu de [[fr:​research:​thesis-defense|mes travaux de thèse]], et qui a été publié en 2016 dans Developments in Implicit Computational Complexity, volume 3, pages 91 - 130
 +
 +===== Abstract =====
 +
 +Abstract State Machines of Y. Gurevich capture sequential algorithms, so we define the set of PTIME algorithms as the set of ASM programs computed in polynomial time (using timer-step principle). Then, we construct an imperative programming language PLoopC using bounded loop with break, and running with any data structure. Finally, we prove that PLoopC computes exactly PTIME algorithms in lock step (one step of the ASM is simulated by using a constant number of steps).
 +
 +**Keywords**:​ ASM, computability,​ imperative language, implicit complexity, polynomial time, sequential algorithms, simulation.
 +
 +===== Versions =====
 +
 +Here is the {{:​en:​research:​ploopc2.pdf|submitted version}}.