Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision Les deux révisions suivantes
fr:research:models-computation [2021/04/05 17:00]
apeiron
fr:research:models-computation [2021/04/05 17:02]
apeiron while
Ligne 48: Ligne 48:
   * [[fr:​research:​fi-while|Algorithmic Completeness of Imperative Programming Languages]] (Yoann Marquer), accepté par Fundamenta Informaticae en 2016   * [[fr:​research:​fi-while|Algorithmic Completeness of Imperative Programming Languages]] (Yoann Marquer), accepté par Fundamenta Informaticae en 2016
   *  [[fr:​research:​ploopc|Imperative Characterization of Polynomial Time Algorithms]] (Yoann Marquer, Pierre Valarcher), publié en 2016 dans Developments in Implicit Computational Complexity, volume 3, pages 91 - 130   *  [[fr:​research:​ploopc|Imperative Characterization of Polynomial Time Algorithms]] (Yoann Marquer, Pierre Valarcher), publié en 2016 dans Developments in Implicit Computational Complexity, volume 3, pages 91 - 130
 +
 +====== While ======
 +
 +**Algorithmic Completeness of Imperative Programming Languages** (Yoann Marquer) est un article directement issu de [[fr:​research:​thesis-defense|mes travaux de thèse]], et qui a été accepté par Fundamenta Informaticae en 2016.
 +
 +===== Abstract =====
 +
 +According to the Church-Turing Thesis, effectively calculable functions are functions computable by a Turing machine. Models that compute these functions are called Turing-complete. For example, we know that common imperative languages (such as C, Ada or Python) are Turing complete (up to unbounded memory).
 +
 +Algorithmic completeness is a stronger notion than Turing-completeness. It focuses not only on the input-output behavior of the computation but more importantly on the step-by-step behavior. Moreover, the issue is not limited to partial recursive functions, it applies to any set of functions. A model could compute all the desired functions, but some algorithms (ways to compute these functions) could be missing (see ((Loïc Colson: "About primitive recursive algorithms",​ Theoretical Computer Science 83 (1991) 57–69)) and ((Yiannis N. Moschovakis:​ "On Primitive Recursive Algorithms and the Greatest Common Divisor Function",​ Theoretical Computer Science (2003) ))) for examples related to primitive recursive algorithms).
 +
 +This paper'​s purpose is to prove that common imperative languages are not only Turing-complete but also algorithmically complete, by using the axiomatic definition of the Gurevich'​s Thesis and a fair bisimulation between the Abstract State Machines of Gurevich (defined in ((Yuri Gurevich: "​Sequential Abstract State Machines Capture Sequential Algorithms",​ ACM Transactions on Computational Logic (2000) ))) and a version of Jones' While programs. No special knowledge is assumed, because all relevant material will be explained from scratch.
 +
 +**Keywords**:​ Algorithm, ASM, Completeness,​ Computability,​ Imperative, Simulation.
 +
 +===== Versions =====
 +
 +The {{:​fr:​research:​fi-while-short.pdf|short version}} of the paper had been submitted to [[http://​fi.mimuw.edu.pl/​index.php/​FI|Fundamenta Informaticae]].
 +
 +The {{:​fr:​recherche:​fi-while-long.pdf|long version}} is an older version, with very poor english and presentation,​ but contains proofs omitted in the short version.