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Abstract What is a bulk-synchronous parallel (BsP) algorithm? Behind this
naive question, we can find a complex formalism. First, defining what is for-
mally an algorithm. Second extending this definition to parallel (BSP) comput-
ing. And finally, characterizing BSP algorithms by using an imperative language
and prove, using an operational semantics and a simulation, the equivalence
between the language and the algorithms. For this work, we follow the Gure-
vich’s axiomatic model of sequential algorithms. This model comes with what
is call abstract state machines (ASMs) that capture sequential algorithms. We
have extended both to capture and characterize BSP algorithms.
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1 Introduction
1.1 Context of the work

Nowadays, parallel programming is the norm in many areas but it remains
hard to have well defined paradigms and a common vocabulary as in the tra-
ditional sequential world. One of the problems comes from the difficulty to
get a taxonomy of computer architectures and frameworks: there is a zoo of
(informal) definitions of the systems, languages (paradigms) and programming
models. Indeed, in the HPC community, several terms could be used to desig-
nate the same thing and can lead to misunderstandings. Furthermore, because
there are many paradigms, it could be difficult, even for experts, to distinguish
them. For example, parallel patterns [8,17] versus algorithmic skeletons [16];
shared memory (PRAM) versus thread concurrency and direct memory access
(DRMA, direc remote access); asynchronous send/received routines (MPI) ver-
sus communicating processes (m-calculus).

In fact, in the sequential world, it is easier to classify programming lan-
guages with their paradigm (functional, object oriented, etc.) or some prop-
erties of the compilers (statically or dynamically typed, abstract machine or
native code execution). This is mainly due to the fact that there is an overall
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(and formal) consensus of what are sequential programming languages. For
them, formal semantics have been very often studied and there are now many
tools for testing, verifying (functional correctness), debugging, cost analyzing,
software engineering, etc.. In this way, programmers can implement sequential
algorithms using sequential languages which characterize well these algorithms.

By the way, this consensus is fair only because everyone agrees to what
is informally a sequential algorithm. And from now half a century, there is
a growing interest in defining formally the notion of algorithms [19]. An az-
iomatic definition [19] of the algorithms (Algoseq) is mapped to the notion
of Abstract State Machine (Asm) [19] with a strict lock-step simulation [33].
According to [19], every sequential algorithm can be computed step-by-step
by an AsM. This allows a common vocabulary about sequential algorithms and
gives a notion of “algorithmic completeness”.

Furthermore, common imperative languages (Impseq) such as JAVA or C,
are Turing-complete, which means that they can simulate the input-output
relation of a Turing machine and thus compute (up to unbounded memory)
every calculable functions. Algorithmic completeness is a stronger notion than
Turing-completeness. It focuses not only on the input-output behavior of the
computation but more importantly on the step-by-step behavior (a fair simu-
lation) that exhibit the cost to simulate the computations. Moreover, the issue
is not limited to partial recursive functions, it applies to any set of functions.
A model could compute all the desired functions, but some algorithms (ways
to compute these functions) could be missing. It has been proved in [33] that
common imperative languages are not only Turing-complete but also algorith-
mically complete, by using the axiomatic definition of [19]. That proves what
informally everyone knows: every sequential algorithm could be programmed
with an imperative language [19] and with the appropriate cost [33]. This can
be summarized by: A1gogeq ~ ASM ~ Impgeq

Nevertheless, to our knowledge, there is not such of work for parallel /dis-
tributed (HPC) frameworks. First, due to the zoo of (informal) definitions and
second, due to a lack of realistic cost models (of common HPC architectures)
that give the cost of parallel algorithms. It is a shame because the community
is failing to have rigorous definitions of what are parallel algorithms and study
their algorithmic completeness. The algorithmic completeness is the basis to
specify what can be programmed effectively or not. Moreover, wanted to take
into account all the features of all parallel/distributed paradigms is a daunting
task that is unlikely to materialize. Instead, a bottom up strategy, from the
simplest models to the most complex, is more likely to materialize.

1.2 Content of the work

A first step to the solution is the used of a bridging model, such as BSP here,
because it allows to simplify the task of the algorithm design, their program-
ming and ease the reasoning on cost and to ensure a better portability from one
system to another [2,31]. We conscientiously limit our work to BSP because it
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has also the advantage to be endowed with a simple model of execution closer
to the sequential one and we let more complex models to future works.

There are many different libraries and languages for programming BSP al-
gorithms. The most known are the BSPLIB for € [21] or JAVA [27], the functional
BSP programming language BSML [15], NESTSTEP [22], BSP++ [20], etc.

As stands in [23] about BSML: “An operational approach has led to a BSP
A-calculus that is confluent and universal for BSP algorithms”. The argument
is that these primitives can simulate any BSPLIB program, if the BSPLIB is al-
gorithmic complete for BSP. But none of these languages and libraries has been
proved to be BSP algorithmic complete. Informally, it is the case but we want
to guarantee it. Another advantage is the ability to prove that a programming
language is not BSP: it can be too expressive (MPI) or, on the contrary, it does
not allow programming a BSP algorithm with the right complexity.

To do so, as has been done in [19,33] but for BSP, we give an axiomatic
definition of BSP algorithms. Four postulates will be necessary, basically: three
postulates for sequential computations (as in [19]) and one more for the com-
munications. With such postulates, we can extend the Asms of [19] to take
into account the BSP algorithms. And finally, by extending for BSP the work
of [33], we construct an imperative programming language and we prove that
this language computes exactly BSP algorithms in lock step (one step of the
BSP-ASM is simulated by using a constant number of steps).

We finally answer previous criticisms by defining a convincing set of parallel
algorithms running in a predictable time (using the step-timer principle), and
by constructing a programming language computing those algorithms. This
can be summarized by: A1gopsp ™~ BSP—ASM ~ Impygp

2 General definitions

In this section, we recall some past definitions. We will then introduce the
definition of a fair simulation between computation models and finally a core
imperative language (adjunct with its operational semantics).

2.1 Characterizing sequential algorithms

In [19], the author introduced an axiomatic presentation of the sequential al-
gorithms. The main idea is that there is no language that truly represent all
sequential algorithm. In fact, every algorithmic book or paper present the al-
gorithm in its own way. Depending of the reader to understand and having its
own idea of how the algorithm works, especially if we want to adapt it for its
own purpose or implemented it to get an executable code. Indeed, program-
ming languages gives too much details and are largely machine dependant (or
at least compiler dependant): for example, the programmer has to manage the
allocation of memory using pointers (C) or references (ADA, OCAML), etc.
The main idea of [19] is to consider algorithms in axiomatic way in the
sense that they are in a purely “mathematical world” (hence an axiomatic
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definition using four postulates in place of a definition using the semantics
of a programming language). This formal definition of what is a sequential
algorithm has been studied by the ASM community from several years [7].

By lack of space, we cannot recall this axiomatic characterization of se-
quential algorithms and AsMs. We put then in appendix A.

2.2 Fair Simulation and algorithmic equivalence

A model of computation can be defined in general as a set of programs given
with their operational semantics. In our study we only study sequential and
BSP algorithms, which have both a step-by-step execution determined by their
transition function. So, these operational semantics can be defined by a set of
transition rules (defined later).

Sometimes, not only the simulation between two models of computation
can be proven, but also their identity [18]. But generally it is only possible
to prove a simulation between two models of computation. In our framework,
a computation model M; can simulate another computation model M if for
every program P, of Ms there exists a program P; of M; producing in a
“reasonable way” the “same” executions as those produced by P;.

X |z, denotes the restriction of the £;-structure X to the signature L.
The signature of X|., is Lo, its universe is the same than X, and every sym-
bol s € L3 has the same interpretation in X|., than in X. This notation is
extended to a set of updates:

Alg =aef {(f,a,0) € A| fe L}

But fresh function symbols could be “too powerful”, for example a dynam-
ical unary symbol env alone would be able to store an unbounded amount of
information. In order to obtain a fair simulation, we assume that the difference
L1\ L2 between both signatures is a set containing only a bounded number of
variables (0-ary dynamical symbols).

The initial values of these fresh variables could be a problem if they de-
pend on the inputs. For example, the empty program could compute any f(n) if
we assume that an output variable contains in the initial state the result of the
function f on the inputs n. So, in this paper we use an initialization which de-
pends only on the constructors. Because this initialization is independent (up
to isomorphism) from the initial states, we call it a uniform initialization.

Also, in the following a (constant) temporal dilation d is allowed. We
will say that the simulation is step-by-step, and strictly step-by-step if d =
1. Unfortunately, contrary to the previous example this constant may de-
pend on the simulated program. But this temporal dilation is not sufficient
to ensure the termination of the simulation. For example, a simulated ex-
ecution Yj,...,Y;,Y;, ... could have finished, but the simulating execution
KXoy o5 Xaxty Xaxtt1y -+ Xaxit(d—1)> Xdxt, Xdxt+1, - - - may continue forever.
So, an ending condition like time(A, X)=d x time(B, X) + e is necessary. It
corresponds to the usual consideration for asymptotic time complexity.
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Definition 1 (Fair Simulation)
Let My, M5 be two models of computation.

M simulates M5 if for every program P» of Ms there exists a program Py
of M such that:

1. L(P1) D L(P,), and L(P;)\ L(P2) is a finite set of variables (with a uniform
initialization)

and there exists d € N\ {0} and e € N (depending only on P5) such that, for

every execution Y of P, there exists an execution X of P; satisfying:

2. for every t € N, Xyx¢lr(p,) = Yi
3. time(Py, Xo) = d x time(P2,Y)) + ¢

If M, simulates My and M, simulates M; then these models of computation
are algorithmically equivalent, which is denoted by M; ~ M>.

Remark 1 The second condition det‘ﬁ(pQ) = Y; implies for t = 0 that the
initial states are the same, up to temporary variables.

2.3 Imperative language

After defining the axiomatic definition of algorithms, we have defined Aswms.
But this model of computation is obviously not suitable for programming.
AsMs will serve us as a bridging model between programming languages and
algorithms. For this purpose, we first define a core programming language,
then its operational semantics as a set of rewriting rules and finally having a
fair simulation between ASMs and this core language.

2.3.1 Formal definition of the sequential core language

¢ =daef f(t1,. .. ta) = to The §yntax Pseq of our language is' a stan-
| if F {P,} else {P;} dard imperative core language (see Fig. 1) for
| while F {P} C apd‘ JA.VA. As.usual, we choose a subset of
P =g e|c;P realistic imperative languages (such as ¢ and

JAVA) to ease the understanding and analysis.
A program is a sequence of commands ¢ with
traditional constructions: conditionals, if, and
loops, while. f is a dynamic a-ary function symbol, tg,t1,...,t, are closed
terms and F is a (boolean) formula. The composition of commands ¢; P can be
generalized by induction to composition of programs P3P, by €5Ps =g4¢f P>
and (C; Pl) ; PQ =def C; (Pl ; PQ)

Fig. 1 The core language.

Notation 1 For the sake of clarity, we will omit the € inside curly brackets
in the rest of the paper. For example, as is the case for ASM programs, we write
only if F {P} for the command if F {P} else {e}.
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The operational semantics of P, is formalized by a state transition sys-
tem. That specifies the execution of the program, one step at a time. A set of
rules is repeatedly applied on program states, until a final state is reached. If
rules can be applied infinitely, it means the program diverges. If at one point
in the execution there is no rule to apply, it is a faulty program. A state of
the system is a pair P x X of a program and a structure. Its transitions > are
determined only by the head command and the current structure. The rules
are defined in Fig 5. For sake of conciseness, we merge these rules with the
ones of sequential computations of the BSP language; so the rules for managing
the environment of communications is no need (and no sense) here.

The successors are unique, so this transition system is deterministic. We
denote by ; a succession of ¢t transition steps. Only the states e x X have no
successor, so they are the terminating states.

Notation 2 P terminates on X if there exists t and X' such that:

PxX ¢ G*X/

Because the transition system is deterministic, t and X' are unique. So X' is
denoted P(X) and t is denoted time(P, X).

The difference with common models of computation is that the data struc-
tures are not fixed. As is the case for the Asms, the equality and the booleans
are needed, and the unary integers will also be necessary for the number of
processors (and their ids), but the other data structures are seen as oracular. If
they can be implemented in a sequential algorithm then they are implemented
using the same language, universe and interpretation in this programming
language. So, the fair simulation between ASMp and P4 is proven for control
structures, up to data structures. Finally, it has been proved in [33]:

Theorem 1 (1) ASM fairly simulates Pseq and (2) Pseq fairly simulates ASM
The proof is done by syntactical induction [33] on both ASM and Pi,,.

3 Characterizing BSP algorithms

The BsP model (Bulk Synchronous Parallelism) [31,2] is a bridging model
that is it eases the way of programming various parallel architectures using a
certain level of abstraction. That allows to reduce the gap between an abstract
execution (programming an algorithm) and concrete parallel systems (using
a compiler). The assumptions of the BSP model is thus having portable and
scalable performance prediction on HPC systems. Without dealing with low-
level details of parallel architectures, the programmer can focus on algorithm
design — complexity, correctness, etc. A nice introduction for its “philosophy”
can be found in [28] and a complete book of numerical algorithms is [2].

In this section, we present the BSP model and try to formally characterizing
BsP algorithms. For this, we will extend the previously presented postulates
in order to capture asynchronous computations, and add a fourth postulate
for the synchronization barrier and communication.
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3.1 The BSP bridging model of computation

The BSP bridging model describes a parallel architecture, an execution model
and a cost model which allows to predict the performances of a BSP algorithm
on a given architecture. We recall each of them in 3 the following.

3.1.1 The BSP architecture

A BSP computer is form by 3 main components: (1) A set of homogeneous pairs
of processors-memories; (2) A communication network to exchange messages
between pairs; (3) A global synchronization unit to execute global synchro-
nization barriers.

A wide range of actual architectures can be seen as BSP computers. Clus-
ters of PCs and multi-cores, etc. can be thus considered as BSP computers. For
example share memory machines could be used in a way such as each processor
only accesses a sub-part of the shared memory (which is then “private”) and
communications could be performed using a dedicated part of the memory.

3.1.2 The execution model

The execution of the BSP program is
a sequence of super-steps (Fig. 2), each
local one divided into three successive disjoint
computations .
phases: (1) Each processor only uses its
T : local data to perform sequential compu-
N ! communication  tations and to request data transfers to
i&&]i}i} barrier other nodes; (2) The network delivers the
. requested data; (3) A global synchroniza-
tion barrier occurs, making the transferred
data available for the next super-step.
This structured model enforces a strict separation of communication and
computation: during a super-step, no communication between the processors
is allowed but only transfer requests; only at the synchronization barrier in-
formation is actually exchanged. The BSP model supports communication en
masse. This is less flexible than asynchronous messages, but easier to debug.
Note that a BsSP library can send messages during the computation phase of
a super-step, but this is hidden to programmers. There exist different BSP
programming libraries. The most known are BSPLIB [21,35], PUB [5] for the ¢
language and HAMA [27] for JAVA. A MPI program only using collective opera-
tions can also be viewed as a BSP program.

next super-step

Fig. 2 A BSP super-step.

3.1.8 The cost model

The performance of a BSP computer is characterized by 4 parameters: (1) The
local processing speed r; (2) The number of processors p; (3) The time L
required for a barrier; (4) The time g for collectively delivering a 1-relation.
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A 1-relation is a collective exchange where every processor receives/sends
at most one word. The network can deliver an h-relation in time g x h. To
accurately estimate the execution time of a BSP program, these 4 parameters
can be easily benchmarked [2]. The execution time (cost) of a super-step s is
the sum of the maximal local processing time, the data delivery and the global
synchronization times. The total cost (execution time) of a BSP program is the
sum of its super-steps’ costs.

8.1.4 Other presentations of BSP

In some previous works, the BSP model is presented in a slightly different way.
We still prefer the presentation of [28] that is more common. For example, In
[31,29], there is a barrier each L computation or communication steps. This
born of computation/communication is hard to introduces in libraries and
programming languages. Furthermore, when the algorithm has unknown (at
compile time) steps of computations (e.g. model-checking algorithms), there
is no need of these additional barriers.

Another example is in [2]. To simplify the cost analysis of the presented
algorithms, there are two kinds of super-steps: those that perform only com-
putations and on contrary, those that only performs communications. Both
are terminated by a barrier. That do not truly change the model rather only
introduces more barriers.

3.2 Axiomatic characterization of BSP algorithms

The BsP model defines the machine with multiple computing units (proces-
sors, cores, etc.), which have their own memory. Therefore, a state S; of the
algorithm must be a p-tuple (th, . ,X,f’)1 where p is the number of com-
puting units. Each units needs to know its own process identification and the
total number of units, so the language of the algorithm will contain two more
symbols nproc and pid. We extend the sequential postulates to capture BSP
algorithms. An execution of a BSP algorithm stay a sequence of states and the
duration the number of steps done before reaching a final state.

BSP-Postulate 1 (Sequential Time) A BSP algorithm Ay, is given by:

1. a set of states S(Apsp)
2. a set of initial states I(Apsp) C S(Apsp)
3. a transition function T4, , : S(Apsp) — S(Absp)

An execution of Ay, is a sequence of states S = Sy, S1, S2, ... such that:

1. Sp is an initial state of S(Apsp)
2. For every t € N, Siy1 = 74,,,(5)

BSP-Postulate 2 (Abstract States) For every BSP algorithm Aggp:

L To simplify, we annotate units from 1 to p and not, as usual in HPC, from 0 to p—1.
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1. The states of A are p-tuples® of (first-order) structures with the same sig-
nature L(A), which contain the symbols nproc and pid

2. S(A) and I(A) are closed by p-isomorphism

3. The transition function T4 preserves the universes and the number p of
processors, and commutes with the p-isomorphisms

A p-isomorphism is a isomorphism that can into account p-tuples. If (X Lo
is a state of the algorithm A, the structures X', ..., XP will be called proces-
sor memories or local memories. The seg( of the local memories of A will
be denoted by M(A). The interpretation ¢~ of a term ¢ in a structure X is
defined by induction on t:

1. If t = ¢ is a constant symbol, then 7X def ox
2. If t = fty...to where f is a symbol of the language £(X) with arity a > 0
_ X _

and tq,...,t, are terms, then X I (tlx, ..,taX)

Let A be an algorithm and T be a set of terms of L£L(A). We say that
two states (Xl, e ,Xp) and (Yl, . ,Yp) of A coincide over T if for every

1§i§pandf0reveryt€TwehavefX -7

BSP-Postulate 3 (Bounded Exploration for Processors) For every BSP
algorithm A there exists a finite set T(A) of terms such that for every state

(X',...,XP) and (Y',...,YP), if they coincide over T(A) then for every

1 <4 <p, we have A(A, X") = A(A,Y?).

This T'(A) is called the exploration witness of A. If a set of terms T is
finite then its closure by subterms is finite too, so as in [19] we will assume
that T'(A) is closed by subterms.

Lemma 1 (BSP structures as sequential ones) If (f,a1,...,aq,b0) €
A(A, X) then ay,...,aq,b are interpretations in X of terms in T.

The proof is as in [19] but using p-tuples.
A purely asynchronous computation as a parallel algorithm is an object
verifying these three postulates.

Lemma 2 A parallel algorithm running with only one processor (p =1) is a
sequential algorithm.

For a BsP algorithm, the sequence of states is organized using super-steps.
Notably, the communication between the processor memories occurs only dur-
ing a phase. To do so, a BSP algorithm A will use two functions comp , and
sync 4 indicating if the algorithm runs computations or runs communications
(following by a synchronization). A BSP algorithm is an object verifying these
four postulates, and we denote by Algoys, the set of the BSp algorithms.

2 p is fixed for the algorithm, so A can have states using different number of units.

,XP)
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BSP-Postulate 4 (Synchronization Barrier) For every BSP algorithm A
there exists two applications comp 4 : M(A) — M(A) and sync, : S(A) —
S(A) such that :

(comp,(X1),...,comp,(XP)) if there exists 1 <i < p
TA (Xl,...,Xp) = such that comp 4(X?) # X*
sync, (X*',..., XP) otherwise

This requires three remarks. First, not only one processor performs the local
computations but all those who can. Second, in case of a communication from
i to j, £L(X7) must be interpreted in £(X?). Third, we do not specified function
sync, in order to be generic about which BSP library of communications is
used. For example, the BSPLIB [21] and the PUB [5] do not used the same kind
of receiving routines:

BSPLib:
void bsp_gsize(int *packets, int *accum_nbytes)
void bsp_move(void *payload,int reception_bytes)
PUB:
t_bspmsg* bsp_findmsg(int proc_id, int index)
void* bspmsg_data(t_bspmsg+* msg)

where, using the BSPLIB, bsp_gsize checks to see how many packets arrived
and bsp_move moves a packet from the system queue independently of the
emitter. Whereas, using the PUB, bsp_findmsg finds the nth message in the
queue of a particular emitter and bspmsg_data returns the data of this mes-
sage. We thus prefer to be generic of how data are communicated and just
saying that data are moved.

A final states (X!, ..., XP) isnow where 74 (X*,..., XP) = (X!,..., XP) =
sync (X1, ..., XP) that is there exists not < i < p such that comp 4(X*) #
X% and the sync , is the identical function®.

4 Operational semantics of BSP and transformations

We now give the operational semantics of two kinds of BSP objects. First, a cer-
tain class of ASM which captures the above 4 BSP postulates. Second, a core lan-
guage for imperative programming. We then give transformations of these two
objets to each other. We finally prove their equivalence using a fair simulation
and conclude that the core language a la BSPLIB is universel for BSP: all BSP
algorithms could be programming with this language with the expected cost.

4.1 Semantics of BSP-ASM

The operational semantics of the BSP-AsMs is based on the following idea:
one machine operates on p distinct memories until nothing happens; Then

3 It is like a final synchronization phase which terminates the BSP algorithm; as we can
found in MPI.
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the communication function performs the exchanges of data and the machine
backs to work; But if after the communication, the states remain the same,
the BSP-ASM stops. BSP programs are SPMD (Single Program Multiple Data)
so a BSP-ASM [T is started p times.

Definition 2 (A BSP-ASM) A BSP-ASM is a pair of an AsMm IT with a
p-uplet of memories (X1, -+, XP).

Because there exists subtle differences between the primitives of the BSP li-
braries, for both Bulk Message Passing (BSMP) and Remote Memory Access
(DRMA), we abstract and separate them into three kinds of routines [14]
and thus the syntax of IT is completed with: (1) the asynchronous sending
fsend(t1,- .- ta) i=t§e"? (that are only adding request of communication); (2)
asynchronous reading of received messages t{ := frc,(t1, ..., ts) (reading the
environment of communications); (3) a synchronous one fsync, that performs
the barrier and cause the communications of the whole BSP machine. Note
that we can also simulate a collective routine such a broadcast using appro-
priate asynchronous sending and a synchronization. In this way, we abstract
how performing communication between processors and synchronizing them.
This allows to focus the work on the semantics study and not to the order
(scheduling) of sending and reception of messages.

Remark 1 If these two p-uplets (X 1 ) and (Y1 YP) coincide over
T then they coincide over T'U {nproc, pld} Indeed, we have nprocX = p =

nprocY for every X? and Y?, and moreover we have pld =i= pld

Remark 2 There is a separation between the computation functions and the
sending routines. And both definitions of are close. A naif simplification would
to merge them. But that is not possible because when sending a value, it cannot
contains symbols that the receiving processor is unable to interpret.

The semantics Z of a BSP-ASM is as follow:

A(IT, X1, -+« A(IT, XP) if 31 <4 < p such that A(IT, X*)#£0
sync;(X?t,---,XP)  otherwise

A x|

where A is the local semantics of ASMs (a recall is defined in appendix A). The
Read (terms read) and Write (updates) are modified accordingly to the fsend
and f,., functions. Fig 3 gives also the modification of A for these functions.
For communicating routines, we supposes a specific symbol env (environment
of communication) that can store the values to be communicated. This symbol
comes with the function newEnv that can add (resp. delete) values when a
request of communication (resp. reading values). This function uses the inter-
pretation in X of its parameters to update the symbol env. Note that there is
no rules for synchronizing routines. They will be used for the global reduction.

Definition 3 (BSP Terminal) A BSP-ASM is in a terminal state if V1 <14 <
p7A(H,XZ)=® and SyncH(Xla T 7Xp) = (X17 e ,Xp)
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—X X —x.x
A(fsend(ti, ... ta) :=to, X U{env}) =4of {X UnewEnv(env, f,t17,...,ta" ,t0" ) }

X
— —X e X
A5 = frev(tt, .- ta), X U{env}) =gor {X U (env ® (frevsT1 s v sla B30

)}

Fig. 3 Adding the the manage of the environment of communications in BSP-ASMs.

that is not computation nor communications are possible. It now is easy to see
that the BsP-ASMs correspond to the previous postulate of BSP algorithms:

Proposition 1 Algoys, ~ BSP-ASMS
The full proofs could be find in [34] and appendix A.
Corollary 1 Every BSP-ASM has a normal form.

Proof According to the previous proposition, an BSP-ASM is a BSP algorithm,
and according to the previous proof every BSP algorithm can be captured
with a BSP-ASM in normal form. Thus, our initial BSP-ASM is equivalent to a
BSP-ASM in normal form.

We can also adapt to BSP the definition of a fair simulation. Because the
BSP-ASM continues to work (but by doing nothing) for processors that have
not finish the current super-step, the time dilation d could be used as for
sequential algorithms. Indeed, we count the number of steps in the super-
steps and thus also the number of of super-steps. The only need difference
is the dilatation of the communication. We thus introduce a new factor c
that born the communications. The BSP fair simulation of P, by P, is now
time(Py, Xo) = d x time(Ps,Yy) + € + ¢ x Allcomm(Ps,Yy) where Allcomm

counts all the communications of the BSP algorithm and is defined as follow:

Allcomm (Apsp, So) def YAt € N Jif 74, (S:) = St41 then

max{i € {1---,p}, max(|| X send; |\X’i||rw) if 74,,, = sync, )
0 otherwise

where S; = X! ..., XP and S;y1 = X1, ..., X'P. ||V sena denotes the size
of the sending (resp. receiving) of Y.
4.2 Semantics of a core BSP language

¢ =qef Sequential commands The syntax of our language Impysy, is as for

| foend(ty,- .. ta) = tend sequential computation.s With.an adflitional

| Fayme() syntax for Bsp 1nstrgct10ns. Fig. 4 gives the

| 400 = fron(ty, ... t,)  SFamuDAr. As explz?m before, we have the
P=gge|c;P asynchronous sending feena(ti,...,ta) =
t3end the asynchronous reading of received

messages 0% = frev(t1,...,ta) and the

Fig. 4 The core language. .
& sHag barrier fsyne.
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Sequential rules:

Flt1, b)) = ti Px X =T Px X @ (£, Ta B0 ™)
if F {Pl} else {PQ};Pg*X P P §P3x X if F'is true in X
if F {Pl} else {PQ};Pg*X P PrsP3x X if F' is false in X

while I {P1}; Pax X =% Pi;while F {P1}§ P+ X
if F'is true in X
while F {P1}; Pox X =' Pax X if F is false in X
Managing the environment of communications :

; —X —X —X
fsend(t1, ..., ta) :=to; P+ X U{env} »* P X Ll {newEnv(env, f,t1*,. % ta” ,t0" )}
0 = frep(t, - ta); Px X U{env} =" Px X @ (frevsB1 s oo 5 0500 ) U {env}

Fig. 5 Operational semantics; Local (sequential) rules of a computation unit i.

To define the operational semantics >, we need local rules to execute asyn-
chronous computations and global rules for managing the whole distributed
machine. BSP programs are SPMD so a program P is started p times. For this,
we use p-state that is a program (a sequence of commands) with its own £(X):
(P' % X1 ... PP x XP). The evaluation terminates when reaching a p-state
of the form (ex X1,... ex XP). If not, it is an invalid program or a diverging
one if always we can apply the two following rules.

We first the rules for the local execution =, i.e. on a single processor i in
Fig 5. They are close to the ones of the BSP-ASMs.

Compared to a semantics of a sequential language, the major change is lo-
cated within the distributed rules > and we note >=* the transitive and reflexive
closure of >. These two rules are defined in Fig 6. The first rule is for perform-
ing the local computations on all processors until reaching a synchronization
routine. The second rule is for performing the whole synchronization/commu-
nication. For this, we suppose a function Comm that update all the £(X?)
and all the env’. The Comm function models the exchanges of messages and
thus specifies the order of the received messages depending on the parameter:
it modifies the environment of each processor i; it is “just” a reordering of the
p signatures. As usual, this function depending of you own BSP library.

Proposition 2 (Determinism) The operational semantics is deterministic
considering all external function f, deterministic. That is if (P X1,..., Px
XP) =% (ex X' . ex X'P) and (Px X1, ... PxXP) =* (ex X" ... exX"P)
then (X', ..., X'P) = (X" ..., X"P).

The determinacy is easy to prove since all rules are locally deterministic and
the > reduction is locally confluent: if from one state two steps are possible,
they can only be local executions on two different processors.
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J1<i<p PixXPs?plisix't
(PY% X1, PP x XP) = (P % X' ..., PP x X'P)

(P'M % X't ... P'P % X'P) = Comm((P! x» X! ... PP x XP))

(P' X', PP x XP) = (P % X', ... PP« X'P)
where Vi, P' = fsync(); P

Fig. 6 Operational semantics; global rules of the whole machine.

(o) = {e}
G(e; P) 2 G(e); PUG(P)
G(fo(t1,. .. ta) :=1t2) def {f2(t1,...,ta) :=t?} where ? = _ sync, send, rcv
G(if F {P1} else {P2})

(it F {Py} else {P2} } UG(P) UG(P2)
G(while F' {P})

4f (while F {P} } UG(P);while F {P}

Fig. 7 The control flow graph of a program P.

4.3 Transformations of the objets
4.8.1 From I'mpys, to BSP-ASMs

The compilation of a program P into a BSP-ASM Ilp is done first by the
simulation of each step of the evaluation of the program by the ASM and second,
to find these steps, generating a code (defined in Fig 8) for each instruction of
P using a control flow graph? (defined in Fig 7).

In order to define the control flow graphs we need to introduce the notation:

G; P =44 {Pj; P | Pj €G}

where G is a set of imperative programs and P is an imperative program. Let
P be an imperative program. G(P), in Fig 7, is the set of every possible 7% (P)
programs, which does not depend on an initial state X.

The fresh boolean variables will be denoted bp,, where P; € G(P). One
and only one bp, will be true for each step of an execution, so in the following
we will write X [bp,] if bp, is true and the other booleans bp, are false, where
X denotes a L(P)-structure. Notice that X[bp,]|,(p)y = X.

Now, the translation of an imperative program P into an ASM is:

IIp def if —byait then par if bpj then [[Pjﬂasm endpar endif
Pjeg(P)

where ﬂPjﬂasm is defined in Fig 8. The bya;t is another fresh boolean that is
initiated and set to false by the Comm function (of communication). Then
the synchronous primitive set it to true making the BSP-ASM nothing for the
processor until the end of the current super-step. Note that the functions

4 The possible executions of a program will be represented by a graph where the edges
are the possible transitions, and the vertices are the possible programs.
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[elasm def par endpar

def
[f2(t1, .. ta) == t0; Qlasm = par
by (b1, ta)=t0;Q = false
Il f2(t1; .. ta) == to
lbg := true
endpar where ? = _ send, rcv

if F then {P1} else {P2}; Qlasm def par
[ {P1} {P2}; P

bit F then {P1} else {Py};q ‘= false

|[if F then
bp,;q = true
else
bp,.q := true
endif
endpar

while F {P}; Qlasm def ar
[ {rhal 2

bunite F {P};Q = false
|[if F then

bP;while F {P};Q ‘= true
else
bg := true
endif
endpar

def
Hfsync();Q]]asm = par
bsync;@ := false
||bwait := true
lbg := true
endpar

Fig. 8 Generation of AsM code from the program.

(f), asynchronous send/receive (fseng and fr.c,) are transformed to their Asm
counterparts. A special case is the loop with an empty code e. A simple solution
is available in [33] but is not presented here since it is irrelevant.

Notice that for every P; € G(P), A(Ilp, X [bp,]) = A(P}", X[bp,]). We use
this fact in [34] to prove by exhaustion on 7% (P) that the translation of the
imperative program P behaves as intended:

Proposition 3 (Step-by-Step Simulation)
For every t < time(P, X), Trp (T;D(X)[bT}t((P)D = Tltfl(X)[bT;ﬂ(P)]

Proposition 4 BSP-ASM fairly simulates Impys, with (ending) e = 0 and
(temporal dilatation) d =1 and ¢ = 1 (without communication dilatation).

The full proofs could be find in [34].
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4.3.2 From BSP-ASMSs to Impyg,

Let IT be a BSP-ASM program. The purpose of this sub-section is to find a BSP
program Pk, simulating the same executions as II. We construct it in three
steps: (1) Translate IT into an imperative program P, simulating one step
of the BSP-ASM; (2) Repeat Py, a sufficient number of times, depending on
@11, the complexity of IT; (3) Ensure that the final program stops at the same
time as the BSP-AsSM, up to temporal dilation.

According to [19], every ASM is equivalent to an ASM in normal form, so
we can assume that I7 is in the following normal form:

par if Fj then II;
H if F5 then I,

| if F. then II.
endpar

So that every F; is a guard, which means that only one F; is true for the
current state X. And, each II; contains only updates inside a par command.

(1) Translation of one Step. The solution is to translate the commands di-
rectly by adding temporal variables since we must paying attention to the
ASM’s parallelism of updates: the simultaneous commands of ASM must be se-
quentialized; To do so, we need to store the values of the variables read in the
ASM program into fresh variables otherwise such variables may be overwrite
by the parallelism of updates. For example, the following AsM:

par z := y|ly := = endpar
must be transformed into a Impys, code of the form:
Uy 1= Y5 Up 1= XX 1= Uy Y = Uy

Such a transformation could be find in [33]. Mainly, by using the set of read
variables, on step of IT is translated as following:

Pstep —def
Vg, =g g, =
if v, then {fll(vt}) = Ul §f71n1(vt}n1) = vt}”l;skip(m—ml);; i
if VF, then {ff(vtf) = Vgt fv?nC (vtfnc) = Utsnc;skip(m*mc);; }7
end

where v, are the fresh variables. Because these variables must have a uniform
initialization, we have to update them explicitly at the beginning of the pro-
gram by using a sequence of updates. Moreover, the execution time depends
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on the current initial state; This is an issue because, according to our defi-
nition of the fair simulation, every step of the AsM IT must be simulated by
d steps, where d depends only on I1. In order to obtain a uniform temporal
dilation, we will add skip commands® to the program. As intended, we prove
that Pge, simulates one step of I in a constant time ¢7:

Proposition 5 (Semantical Translation of the BSP-ASM programs)
There exists ti7, depending only on II, such that for every state X of Pgep:
= (Pstep(X) © X)|2(my = AUL X2 mm))

— time(Pstep, X) = tn

The proof is done by case analysis and could be find in [34].

(2) Translation for the whole machine.

bstop := false;

while —bgtop

{
Pstep;
while —Fy {Puep:}
fsync();

(3) Termination of the program.

Proposition 6 Impy, fairly simulates ASMp with (ending) e = tg+6x Pr+1
and (temporal dilatation) d = tg + 2 and ¢ = 1 (without communication
dilatation).

Theorem 2 Algoysp =~ BSP—ASM =~ Imppgp

5 Conclusion and Future Work
5.1 Summary of the Contribution

The following equation summarizes the result: Algops, ™~ BSP—ASM ~ Imppgp.
More precisely, we have give an axiomatic definition of BSP algorithms by
adding only one postulate to the sequential definition. Mainly this postulate
is the call of a global, abstract and synchronous function of communications.
This function is also used to synchronize both a parallel extension of ASMs
and a imperative programming language ¢ la BSPLIB.

We have give two functions of compilation, one from BSP-ASM to this core
language and another for the opposite path. And we prove a fair simulation
of these objects. We can conclude that the core language is BSP algorithmic
complete and thus that the BSPLIB is.

5 It may seem strange in an algorithmic purpose to lose time, but these skip commands
do not change the asymptotic behavior and are only necessary for our strict definition of the
fair simulation. It is possible to weaken the definition of the simulation to simulate one step
with < d steps and not = d steps, but that makes the proof unnecessarily more complicated.
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5.2 Questions and answers about this work

Why not using a BSP-Turing machine to simulate a BSP algorithm?

For sequential computing, it is known that Turing machines could simulate
every algorithms or any program of any language. But without a constant
factor [1]. In this way, there is not an algorithmic equivalence between Turing
machines and common sequential programming languages.

Why do you use a new language BSP-ASM instead of using ASMs? Indeed, each
processor can be seen as a sequential ASM “a la Gurevich”. So, in order to
simulate one step of a BSP algorithm using several processors, we could use
pid to compute sequentially the next step for each processor by using an ASM.

But if you have p processors, then each step of the BSP algorithm will be

simulated by p steps. This contradicts the temporal dilation: each step should
be simulated by d steps, where d is a constant depending only of the simulated
program. In that case, the simulation of a BSP algorithm by a sequential ASM
would require that p is constant, which means that our simulation would hold
only for a fixed number of processors, and not for every number.
Why do not you consider the number of processors as part of the input of
the algorithm? For example, a sorting algorithm for an array will have an
execution time depending of the size of the array. In this point of view, the
total execution time could depend of the number of processors, and each step
may be simulated by d * p steps.

Indeed, the total number of steps depends on the size of the inputs, which
includes nprocs. But the execution time should not be confused with the cost
for simulating one step. If the BSP algorithm requires f(n) steps, where n is
the size of the inputs, then our simulation will require d * f(n) + e steps (and
the same communications). Our simulation respects the O(f(n)) in time, but
this is not the main point. Our simulation is algorithmic because it respects
the step-by-step behavior of the BsP algorithm, by simulating each step by
d steps, where d does not depend of the size of the inputs or the number
of processors. Also, it is not possible to use p ASM’s parallel updates since it
breaks the bound postulate. Simulating the execution of a BSP program with a
sequential one has been studied by the second author in [14] but in the context
of proving the correctness of algorithms not the algorithmically completeness.
Why are you limited to SPMD computations?

Different codes can be run by the processors using conditionals on the “id”
of the processors. For example “”if pid=0 then codel else code2”” for running
“’codel”” (e.g. master) only on processor 0.

When using BSPLIB and other BSP libraries, I can switch between sequential
computations and BSP ones. Why not model this kind of commands?

The sequential parts can be model as purely asynchronous computations
replicated and performed by all the processors. Or, one processor (typically
the first one) is performing these computations while other processors are
“waiting” with an empty computation phase.

What happens with random reading of messages such as in the BSPLIB ¢
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Random algorithms has also been studied in the AsM framework [7]. We
can say that such structures are typically heaps of messages. And thus, two
executions, within the same environments, will lead to identical results. For
determinacy, adding the environments of execution is a tricky (but not elegant)
solution. Otherwise, truly formally studying randomized algorithms is a hard
task, even for sequential computing, which is only at its beginning and which
is irrelevant in this article.

What happen in case of runtime error during communications?

Typically, when one processor has a bigger number of super-steps than
other processors, or when there is an out-of-bound sending or reading, it leads
to a runtime error. The BSP function of communication can return a L value
and nothing can be do stopping the semantics for both BSP-ASM and Imppgp.
Why uses this plethoric number of definitions to just prove an oblious result?

Well, It is the main drawback of formal proofs: everything needs to be de-
fined even the most intuitive concepts. But keep in mind that this algorithmic
equivalence has never been proved before. And having given these definitions
would surely simplify an adaptation of this work to other bridging models.
What about related work?

To our knowledge, some works exist to model parallel or distributed pro-
grams using ASMs but none to characterize BSP algorithms and, using AsSMs,
to prove that a language is algorithmic complete. One example is the work of
[10] to models the P3L’s skeletons. That allows the analyses of P3L programs
using standard ASM tools but not a formal characterization what is P3L and
what is not (in an algorithm point of view).

The first work to extends AsMs for concurrent, distributed, agent-mobile
algorithms is [4]. Too many postulates are used making the comprehension
hard to follow and worst, loses confidence in these postulates. A first attend
to simplify this work has been done in [26] and again simplified in [13] by the
the use of multiset comprehension terms to maintain the bounded exploration.
Then, the authors prove that ASMs captures these postulates. We believe that
their postulates are more general than ours. But the authors are not concerned
about the problems of algorithm completeness using a cost model which is the
heart of our work (and the main advantage of the BSP model).

Extends the Asms for distributed computing is not new [6]. For example
the works of [25,9] about multi-agents and data-flow programs. We think that
our extension still remains simple and natural for BSP computing.

5.3 Future Work

This work leads to many possible work. First, to gain in confidence, we are
working on a mechanical proof using the coQ system. Second, how adapting
our work to an hierarchical extension of BSP [32] (which is more close to
modern HPC architectures)? And for other models such as logp [11], dBSP
[12] (for subgroups synchronizations), etc.? Can we thus imagine a method
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that “automatically” characterizes parallel model since there is (or will be) a
plethoric number of bridging models.

More concretely, there is many languages having a BSP model of execution,

for example Pregel [24] for writing large-graph algorithms. An interesting work
is proving which are BSP algorithmic complete and which are not. Pregel is a
good candidate to be not BSP. Indeed, a short-path computation using Pregel
needs n super-steps (where n is the shorter path) since a node could only com-
municating with its neighborhood, whereas log(p) super-steps could be done
[30]. Similarly, once can imaging proving which languages are too expressive
to be restricted to BSP.
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A Characterizing sequential algorithms

In this section, we recall the axiomatic definition of sequential algorithms. We will introduce
the postulates briefly in the first subsection, as well as other notions from ASMs such as



Y. Marquer, F. Gava

execution, time, structure and update. In the second subsection, we recall the use of AsM
to capture in an operational manner the axiomatic definition of sequential algorithms. In
the third subsection, we finish with the algorithmic equivalence between ASM and the core
imperative language.

A.1 Axiomatic definition of sequential algorithms

A common definition of algorithms is the set of functions computable by a determinist
Turing Machine in a finite time. That is to say a set of instructions, a memory and a finite
and determinist execution of these instructions. This definition uses a step-timer principle
(bounding the running time), which can be criticized in two ways:

1. According to this definition, one-tape Turing Machines and two-tape Turing Machines
should be equivalent. But the palindrome recognition can be done in O(n) steps with a
two-tape Turing machine while requiring (see
citePalyndrome at least O(n?/log(n)) steps with a one-tape Turing machine. So, the
concrete implementation and its associated complexity (more specifically, the degree
of the time complexity) depend on the considered model. Therefore, we need a more
precise definition of time algorithms.

2. The second issue comes from the step-timer principle itself. It is not convenient for
programmers to use an external function attached to the algorithm. The answer comes
from implicit complexity computation frameworks. But in general, these external func-
tions are unknown and can break the complexity. Their thus a need to explain what is
acceptable or not.

In [19], sequential algorithms are giving by the three following postulates [19]: (1) Se-
quential Time; (2) Abstract States and (3) Bounded Ezploration. In the rest of the paper,
the (infinite) set of “objects” satisfying these three postulates is denoted by Algogeq. It is to
notice that by using only 4 postulates to trust, we can have a good confidence to the results.

Postulate 1 (Sequential Time) A sequential algorithm Aseq is given by:

1. a set of states S(Aseq)
2. a set of initial states I(Aseq) C S(Aseq)
3. a transition function Ta,,, : S(Aseq) = S(Aseq)

seq
An execution of Aseq is a sequence of states S = Sg, S1, S2,... such that:

1. Sp is an initial state of S(Aseq)

2. For every t €N, Spy1 = 74, (St)

Remark 3 Two sequential algorithms Aseq and Bseq of Algoseq have the same set of exe-
cutions if they have the same set of initial states I(Aseq) = I(Bseq) and the same transition
function TAgoq = TBaog- T that case, they can only be different on the states which cannot
be reached by an execution.

There is a debate [3] about this equality but it is not the subject of this paper.

A state St of an execution is final if S¢41 = S¢. An execution is terminal if it contains
a final state. The duration of an execution is defined by the number of steps® done before
reaching a final state:

time(Aseq, So) = otherwise

. 41 . . .
def { min{t € N | th‘\scq (So) = TA;q (So)} if S is terminal
Notice that if the execution X is not terminal then time(Aseq, Xo) = oo.
To state the second postulate, we need to introduce the notion of structure. States of a
sequential algorithm are formalized with first-order structures [19]. A (first-order) structure
X is given by:

6 In the definition of time, f? is the iteration of f defined by f® = id and fi+! = f(f?).
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1. An infinite” set U(X) called the universe (or domain) of X
2. A finite set of function symbols £(X) called the signature (or language) of X
3. For every symbol s € £(X) an interpretation 5% such that:

(a) If c has arity 0 then ¥ is an element of U(X)

(b) If f has an arity o > 0 then ?X is an application: U (X)* — U(X)

In order to have a uniform presentation, as in [19], we considered constant symbols of
the signature as 0-ary function symbols, and relation symbols R as their indicator function
XRr- Therefore, every symbol in £(X) is a function. Moreover, partial functions can be
implemented with a special value undef. This notion of interpretation allows to go from
the world of language to the platonic world of mathematics.

The second postulate can be seen as a claim assuming that every data structure can
be formalized as a first-order structure®. Moreover, since the representation of states should
be independent from their concrete implementation (for example the name of objects),
isomorphic states will be considered as equivalent.

Postulate 2 (Abstract States) For every sequential algorithm Aseq,

1. The states of Aseq are (first-order) structures with the same signature L£(Aseq)

2. S(Aseq) and I(Aseq) are closed by isomorphism

8. The transition function T4 preserves the universes and commutes with the isomor-
phisms

seq

The symbols of the signature £(A) are distinguished between:

1. Dyn(A) the set of dynamic symbols, whose interpretation can change during an
execution (as an example, a variable x)

2. Stat(A) the set of static symbols, which have a fixed interpretation during an execu-
tion. They are also distinguished between:
(a) Init(A), the set of parameters, whose interpretation depends only on the initial

state (as an example, two given integers m and n).

The symbols depending on the initial state are the dynamic symbols and the parameters,
so we call them the inputs.
The other symbols have a uniform interpretation in every state (up to isomorphism),
and they are also distinguished between:
(b) Cons(A) the set of constructors (true and false for the booleans, 0 and S for the

unary integers, ...)
(c) Oper(A) the set of operations (— and A for the booleans, + and X for the unary
integers, ...)

The size of an element of the universe is the length of its representation [33], in
other words the number of constructors necessary to write it. For examples, |—mtruex| =

|WX\ =1land |mx\ = |S(S(S(O)))X| = 4 when using an unary numeral representation.
The logical variables are not used in this paper: every term and every formula is closed, and
every formula is without quantifier. In this framework the variables are the 0-ary dynamic
function symbols.

The size of a state is the maximum of the size of its inputs:

—x
h =de
feDynZZ()lﬁlmz(A)ﬂle}’ where |f|x =qep aiéZIZA)lf (a)l

|X‘ =def

For a sequential algorithm A, let X be a state of A, f € £L(A) be a dynamic a-ary

function symbol, and a1,...,aq,b € U(X). (f,a1,...,aa) denotes a location of X and
(f,a1,...,aa,b) denotes an update on X at the location (f,a1,...,aq).

7 Usually the universe is only required to be non-empty, we need the universe to be at
least countable in order to define unary integers.

8 We tried to characterize common data types (such as integers, words, lists, arrays, and
graphs) in [33]. But we will not go into details, because this is not the point of this article.
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If w is an update then X @ u is a new structure of signature £(A) and universe U(X)
such that the interpretation of a function symbol f € L(A) is:

—X®u b ifu=(f,a,b
e (a):def{ ifu=(f.a,b)

fX (a) else

If ?X (a) = b then the update (f,a,b) is trivial in X, because nothing has changed.
Indeed, if (f,a,b) is trivial in X then X & (f,a,b) = X.

If A is a set of updates then A is consistent on X if it does not contain two distinct
updates with the same location. If A is inconsistent, there exists (f, a,b), (f,a,b’) € A with
b # b, so the entire set of updates clashes:

XA b if (f,a,b) € A and A is consistent on X
f () =def § =X
f7 (a) else

If X and Y are two states of the same algorithm A then there exists a unique consistent
set A= {(f,a,b) | ?Y(a) = b and ?X (a) # b} of non trivial updates such that Y = X @ A.
This A is the difference between the two sets and is denoted by Y © X.

Let A(A,X) = 74(X) © X be the set of updates done by a sequential algorithm A on
the state X.

During an execution, if the number of updates is not statically bounded then the algo-
rithm will be said massively parallel, not sequential. The two first postulates cannot ensure
that only local and bounded explorations/changes are done at every step. The third postu-
late states that only a bounded number of terms must be read or updated during a step of
the execution:

Postulate 3 (Bounded Exploration) For every algorithm A there exists a finite set T
of terms (closed by subterms) such that for every state X and Y, if the elements of T have
the same interpretations on X and Y then A(A,X) = A(A,Y).

This T is called the exploration witness of A.

In [19], it has been proved that if (f,a1,...,aq,b) € A(A,X) then ai,...,aq,b are
interpretations in X of terms in 7. So, since T is finite there exists a bounded number
of ai,...,aq,b such that the update (f,a1,...,aq,b) belongs to A(A, X). Moreover, since
L(A) is finite there exists a bounded number of dynamic symbols f. Therefore, A(A, X) has
a bounded number of elements, and for every step of the algorithm only a bounded amount
of work is done.

A2 ASM

We now recall the definition of Abstract State Machines (AsM) [19] and their operational
semantics. We also how to get a constructive (from an operational point of view) occurrence
of sequential algorithms. The model of ASM is a kind of super Turing machine that works not
on simple tapes (with finite alphabets) but on multi-sorted algebras. A program is a finite
set of rules that updates terms. It is shown in [33], that the expressive power of ASM lies not
in control structures but in data structures, which are modeled within £-structures. Without
going into details, ASM require only in the L-structures the equality =, the constants true
and false, the unary operation — and the binary operations A. They are defined as follow:

Definition 4 (ASM programs)

I =g¢ f(t1,.. ta) ==to
| if F then II; else [I5 endif
| par I11]| ... ||II, endpar

where f is a dynamic a-ary function symbol, tg,t1,...,ts are closed terms, and F is a
formula.
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Notation 3 Forn =0 a par command is an empty program, so let skip be the command
par endpar. If the else part of an if is a skip we only write if F' then IT endif.

The sets Read(IT) of terms read by IT and Write(II) of terms written by II can be used
to define the exploration witness of IT. But we will also use them in the rest of the article,
especially to define the p-formula Fg p.

Read(IT) is defined by induction on IT:

Read(f(t1,...,ta) :=to)

=def {t17 cee 7ta7t0}
Read(if F then II; else II2 endif)

=def {F} U Read(I11) U Read(Il2)
Read(par II1|| ... |/II, endpar)

=def Read(II1)U...U Read(Il,)

Write(II) is defined by induction on IT:

Write(f(t1,...,ta) := to)

=def {f(t1,.- - ta)}
Write(if F then II; else Il» endif)

=qef Write(II1) U Write(I12)
Write(par II1|| ... ||/ IT, endpar)

=def Write(II1) U ... U Write(IIp)

Remark 4 The exploration witness of I is the closure by subterms of Read(II)U Write(II)
and not only Read(II) because the updates of a command could be trivial.

An ASM program IT determines a transition function 77 (X) =g4¢p X ® A(I1, X), where
the set of updates A(II, X) done by IT on X is defined by induction:

Definition 5 (Operational Semantics of ASMs)

A(f (b1, ta) = 10, X) =aes {(f 017, Fa” B0 )}
A(if F then [T else IIz endif, X) =gof A(IT;, X)

. 1 if F is true on X
where i =
2 else
A(par H1]|...||II, endpar, X) =goy A(M11,X)U...UA(II,,X)

Notice that the semantics of the par is a set of updates done simultaneously, contrary
to the imperative language defined in the next subsection, which is strictly sequential. Fur-
thermore, the par construction has a constant arity which does not depend of the input so
could not be the number of processors of the machine (during execution). This construction
is only used for update the L-structures.

Remark 5 For every states X andY, if the terms of Read(II) have the same interpretation
on X andY then A(II,X) = A(IL,Y).

Definition 6 An AsM M with signature £ is given by:

— an ASM program II on L

— aset S(M) of L-structures closed by isomorphisms and 77
— asubset I(M) C S(M) closed by isomorphisms

— an application 7j7, which is the restriction of 77 to S(M)

For every sequential algorithm A, the finiteness of the exploration witness in the third
postulate allows us (see [19] to write a finite ASM program IT4, which has the same set of
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updates than A for every state. Every program [T, obtained in this way has the same form,
which we call the normal form:

par if F then I
|| if F5 then Ilo

|| if F. then II.
endpar

where F; are “guards”, which means that for every state X one and only one Fj is true,
and the programs II; have the form

par uil|...||um,; endpar
where u1,...,um,; are update commands.

Remark 6 A(I14,X) = A(A,X) =74(X)S X, so A(I14,X) is consistent without trivial
updates.

Theorem 3
Algo = ASM

The proof [19] that the set of sequential algorithms is identical to the set of ASMs uses
mainly the fact that every ASM has a finite exploration witness. Reciprocally, for every
sequential algorithm we can define an ASM with the same transition function. Thus, we get
that the axiomatic presentation of sequential algorithms defines the same objects than the
operational presentation of ASMs: every ASM is a sequential algorithm and every sequential
algorithm can be simulated by an ASM in normal form. So, for every AsMm there exists an
equivalent ASM in normal form.

A.3 Axiomatic definition of BSP algorithms and ASM

Proposition 7 Algonsp = BSP-ASM

Proof We prove this proposition by double inclusion:

BSP-ASM C Algopsp Let M be an BSP-ASM. M has an ASM program II, a synchronization
function sync,,, a set of states S(M) and a set of initial states (M) with the attended
properties. We prove that M verifies the four postulates of the BSP algorithms :

1. M has states, initial states, and according to the operational semantics the ASM
program I and the synchronization function sync,, determine a transition function
7a - Thus, M verifies the first postulate.

2. These states are p-tuples of first-order structures containing the symbols nproc and
pid. We assumed that these structures are closed by isomorphism. The transition
function 77 preserves the universes of the local memories and the number p of
processors. Tpy commutes with every isomorphism. Thus, M verifies the second
postulate.

3. By using the operational semantics, we can prove that the set of terms T(IT) =
Read(IT) U Write(II) is an exploration witness for M. Thus, M verifies the third
postulate.

4. Let comp,,; = 77 restricted to 1-tuples. By using the operational semantics, we
have:

T]W(X17 EERR Xp) = (compM(Xl), LR compM(Xp))

as long as there exists a 1 <4 < p such that comp;(X?) # X*?, and we have:
(X', ., XP) =syncy (X', ..., XP)

if for every 1 < i < p we have comp,;(X?) = X*. Thus, M verifies the fourth
postulate.
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Algopsp C BSP-ASM  Let A be a BsP algorithm. A has a set of states S(A), a set of initial
states I(A), a transition function 74, a computation function comp , and a synchro-
nization function sync 4 verifying the four postulates.

We prove the existence of a BSP-AsM program IT such that for every state (X!,..., XP) €
S(A) and for every 1 < i < p we have 777(X*) = comp 4 (X?).
Let A’ be the triplet defined by:

def

1L S(A) = U{X* | (X',...,XP) € S(A)and 1 < i < p and there exists 1 < j <
p such that comp 4(X7) # X7} C M(A)
2. I(A") def U{X? | (X1,...,XP) € I(A) and 1 < 4 < p and there exists 1 < j <

p such that comp 4 (X7) # X7}
3. T4 (XP) def comp 4 (X?)
By definition, A’ verifies the first postulate of Gurevich.
Because S(A), I(A) and 74 verify the BSP postulates, S(A’), I(A’) and 74, verify the
second postulate of Gurevich.
It remains to prove that T'(A) is an exploration witness for A’. According to the previous
remark, we can assume® that nproc and pid are in T'(A).
Let X% and Y7 two states of S(A’) which coincide over T'(4). Because pid is in T(A4)
we have i = j. X* comes from a state (X!,..., XP) € S(A) and Y? comes from a state
(Y',...,Y9) € S(A). Because nproc is in T(A) we have p = q.
By hypothesis on X* there exists 1 < j < p such that comp4(X7) # X7, and by
hypothesis on Y there exists 1 < k < p such that comp 4(Y*) # Y*. So, by using the
fourth BSP postulate :

TA (Xl,...,Xp) = (compA(Xl),...,compA(Xp))

74 (Y1,...,YP) = (comp4(Y"),...,comp,(YP))

Therefore A(A, X?) = comp 4 (X1)© Xt = A(A’, X?) and A(A,Y?) = comp 4 (Y1) ©
Xt = A(A,Y?).

Moreover!'?, because X* and Y? coincide over T'(A) we have that A(A, X?) = A(A,Y?).
So A(A, X)) = A(A, XY = A(A, YY) = A(A,Y?). Therefore A’ verify the third
postulate of Gurevich.

A’ verify the three postulates of Gurevich, so by using [19] there exists an ASM program
IT such that for every state X? we have 77(X?) = 74/(X?). Therefore, for every state
X; during the computation steps, we have comp 4(X;) = 77 (X;).

During the synchronization steps, when for every 1 < i < p we have comp 4(X?) = X,
we only have to take sync, as synchronization function.

Therefore, the BSP-ASM using the program IT and the synchronization function sync 4
is equivalent to A.

Notice that the program IT obtained before is in normal form.

9 Alternatively we could prove that T(A’) = T(A) U {nproc, pid} is the exploration
witness, without the previous remark.

10 To prove by using the third BSP postulate with the fact that the processor (respectively
Xt or Yi) depends only of its previous state and not the previous states of the other
Processors.



