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Remark. It remains only to prove the properties 5.4, 5.5, 5.6 of the middles
p.35. I already proved the lemmas 4.9 p.28 and 4.11 p.29 on my notes, I will
recopy soon. The proofs from the beginning to the lemma 3.3 p.11 included
have been successfully implemented in Coq, except for the three technical
lemmas 2.5, 2.6, 2.7.

1 FIELDS

For the Coq implementation, the fields are computed using booleans but the
results will be proven using propositions as recommanded in Software Foun-
dations (Benjamin Pierce). The definition are simplified (quantifier elimina-
tion) for the implementation, as opposed to the paper (cite finitization).

The problem is one dimensional, where each cell is a number between 1
and n.

Axiom 1.1 (At least three cells).
n>3
The boolean function gen is given by the evolution.

Axiom 1.2 (At least one cell is a general).
Jde,1 < ¢ < nAgen(c) = true

In the following definitions, we assume that or , and andif ... then ...
else ... are the standard booleans operations.

Definition 1.3 (Input Field).

inpo(c) < gen(c)

inp; ;4 (c) et inp,(c — 1) or inp,(c) or inp,(c+ 1)

Inpy(c) def gen(c) = true
Inp, 4 (c) def Inp,(c — 1) VInp,(c) VInp,(c + 1) (1

Like this definition, the boolean fields will be written with lowercase, and
the proposition fields in uppercase. The Coq file contains the proof of equiv-
alence, but they will be admitted in this report.



Lemma 1.4 (Equivalence for Inp).
Vte, Inp,(c) < inp,(c) = true

We assume in the following that the cells are labeled from 1 to n. For
the sake of clarity, the = and < will not be distinguished from their boolean
equivalent, as it is in Coq. The recursive definition of the proposition fields
is:

Definition 1.5 (Proposition Fields).
Brd}(c) e Inp,(c) A(L=cVc=n)
Brd ™ (¢) & Brd!(c) v Mid!(c) )
Ins! (c) e Inp,(c) N1 <cAhe<n
Tnsi ™ (c) L Palse
Insfﬁ (c) def Insf_H(c) A StafH(C)

A (dstf L1(e) < dsti(c— 1) vdst!,, (c) < dst(c — 1))

3)
Staf (c) ef Brd)(c)
Stay;(c) = Brdf,,(c)
\Y (dstfﬂ(c) =1+ dstf(c—1) A Stal(c— 1))
Y (dstfH(C) =1+ dsti(c+1) AStal(c+ 1)) 4)
Mid§(c) 4 False
Midy, ; (c) def (dstf+1(c) > max (dstf(c —1),dsti(c+ 1))
A Stal(c — 1) A Stal(c + 1)>
Y (dstfﬂ(c) = max (dstf(c — 1), dst!(c + 1))
A Staf(c — 1) A Stal(c) A Stal(c + 1)) ®)



where dst is an integer field computed along the booleans fields.

Coq cannot guess™ how to compute such an intricated recursion, so the
recursive definition of the booleans fields is sliced into abstract parts for dif-
ferent given levels. Firstly, using the input field, the border and inside fields

are defined for the level O:

Definition 1.6 (Border and Inside Fields at level 0).

of inp,(¢) and (1 = ¢ or ¢ =n)

brd0(t, ¢)

Lt inp,(c) and 1 < ¢ and ¢ <n

insO0(t, ¢)

Then, the distance, stability and middle fields are defined for every level /,

assuming that the border and inside fields are defined too at this level:

* At least at my knowledge...



Definition 1.7 (Distance, Stability and Middle Fields).

dstL(0, ¢, insL) e
dstL(t + 1, ¢, insL) 4 i insL(t + 1,¢)
then 1 + min (dstL(t, ¢ —1),dstL(t, ¢ + 1))

else 0

staL(0, ¢, brdL, dstL) % brdL(0, c)
staLi(t + 1, ¢, brdL, dstL) def brdL(t + 1, ¢)
or (dstL(t +1,¢) = 1+dstL(t,c — 1) and staL(¢,c — 1))

or (dstL(t +1,¢) =1+ dstL(t,c+ 1) and staL(t,c+ 1))

midL(0, ¢, dstL, stal.) 4 false

midL(¢ + 1, ¢, dstL, stal.) %ef (dstL(t +1,¢) > max (dstL(t, c—1),dstL(t,c + 1))
and staL(t,c — 1) and staL(t,c+ 1)>
or <dstL(t +1,¢) = max (dstL(t, c—1),dstL(t,c+ 1))
and staL(¢,c — 1) and staL(t, ¢) and staL(¢,c+ 1))

Finally, the border and inside fields for the level ¢ + 1 are defined using
the fields defined for the level ¢:

Definition 1.8 (Border and Inside Fields at level ¢ + 1).

brdS(¢, ¢, brdL, midL) % brdL(¢,c) or midL(t, c)

insS(0, ¢, insL, dstL, stal.) 2 false
insS(t + 1, ¢, insL, dstL, stal.) et insL(t + 1, ¢) and staL(t + 1,c¢)

and (dstL(t +1,¢) < dstL(t,c — 1) or dstL(t + 1,¢) < dstL(t,c — 1))
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So the boolean fields should be defined by this mutual recursion:

brd(c) def brd0(t, ¢)

brd*1(c) € brdS(t, ¢, brd’, mid®)
ins (c) def ins0(¢, ¢)
insf+1 (¢) def insS(¢, ¢, ins’, dste, stae)

dstf(c) def dstL(t, ¢, ins®)

sta(c) < staL(t, c, brd’, dst’)
def

mid!(c) = midL(t, ¢, dst’, sta’)

But Coq cannot guess the decreasing argument. So, instead, we substi-
tute the schemata to obtain only one mutual recursion for brd and ins, and
thereafter define the other fields:

Definition 1.9 (Boolean Fields).

brd® % brdo

brd! % prds (brde, midL (dstL (insl ) ,stalL (brdz, dstL (ins£ ))))

. def .
ins = ins0

ins™! 4 inss (inse7 dstL (insé ) ,staLL (brdf7 dstL (insg )))

dst’ dstL(ins®)

sta! & staL(brd", dst)

def

mid* = midL(dst’, sta®)



where f(g1, ..., gk) denotes the field (¢,¢) — f(t,¢,g1,-..,9K)-

In particular, we obtain the equivalence between the respective boolean
and proposition fields, and the specification of dst:

Lemma 1.10 (Equivalence Lemma).
Vete, Brdi(c) < brd!(c) = true
Vite, Inst(c) < inst(c) = true
Vlte, Stal(c) c)
Veéte, Mid! (c) < mid}(c) = true

¢) & stal(c) = true

Lemma 1.11 (Distance Field).
dstg(c) =0
Insfﬂ(c) = dstfﬂ(c) =14 min (dstf(c - 1), dstf(c + 1))

- Insf+1(c) = dstf+1(c) =0 (6)

2 TECHNICAL LEMMAS
Lemma 2.1 (Local Distance).
Vite, dstfﬂ(c) <1+ min (dstf(c —1),dst!(c+ 1))
Proof. Let?, t and c. By case :
o If Insf +1(c) then (6) the equality holds, so does the inequality.

o If - Ins! +1(c) then (6) dst? +1(c) = 0, so the inequality holds.

O
Lemma 2.2 (Middle Distance).
Vite, Midf+1(c) = dstf_H(c) > max (dstf(c —1),dstt(c+ 1))
Proof. Let 4, t and c. By using (5), Miderl (¢) implies two cases:
dstfH(C) > max (dstf(c —1),dst(c+ 1))
dstfﬂ(c) = max (dstf(c —1),dst!(c+ 1))
and the result holds in every cases. O



Remark. We could use the previous lemma to simplify the proof of the fol-
lowing.

Lemma 2.3 (Brd and Ins are exclusive).
Vete, Brd!(c) = Inst(c) = False

Proof. The proof is made by induction on ¢:

e If ¢ = 0 then Brd:(c) implies (2) that 1 = ¢ or ¢ = n, and Ins{(c)
implies (3) that 1 < ¢ < n, hence the contradiction.

o We assume that:
Vte, Brd!(c) = Ins!(c) = False (IHy)
Let ¢ and ¢, and we assume that:
Brd‘ ™ () (Hpra)
Inst T (e) (Hins)
The proof of False is made by case on ¢ :
— If t = 0 then (3) Ins!**(¢) is False, and is assumed.
- Ift = ¢’ + 1, Hy,s implies (3) that:
Ins} 4 (c) (Hins2)
dstl,q (c) < dsth (c— 1) Vst (c) < dsty(c—1) (Has)

Hg.q implies (2) that Brd?, 41(e) v Mid?, +1(c), so the proof is
made by case:

% If Brd}, ., (c), because Hi,s2, we have False by using IH .
x If Midf,+1 (¢), then by lemma 2.2:

dstf,_H(c) > max (dstf,(c —1),dst}, (¢ + 1))

therefore dstf,_H(c) > dst!, (c—1) and dstf,H(c) > dst!, (c+
1), which contradicts H .

O



Lemma 2.4 (Distance of a Border).
Velte, Brdi(c) = dsti(c) =0

Proof. Assuming that Brd!(c), by using the lemma 2.3, we have that — Ins’ (c).
Therefore (6) dst(c) = 0. O

Lemma 2.5 (Middles have stable neighbours).
Vite, Midfﬂ(c) = Stal(c— 1) A Stal(c+1)

Proof. The result is obtained by hypothesis on the two cases (5) of Mid? 11(e).
O

Remark. We could use the previous lemma (introduced lately during the
redaction) to simplify some proofs.

Lemma 2.6 (A middle is stable).
Vete, Mid:(c) = Stal(c)
Proof. Let ¢. The proof is made by case on ¢:
o Ift =0, let c. By (5), Midg(c) is False, so the implication holds.
e Else, we prove Sta(c) by case (5) on the hypothesis Mid! (c):

— In the first case we assume:

dstf+1(c) > max (dstf(c —1),dstf(c+ 1)) (Hd)
Stal(c—1) (HSL)
Stal(c+1) (HSR)

Hd implies that:

dstf+1(6) > 1+ max (dstf(c —1),dstt(c+ 1))
> 14dsti(c—1)

And the lemma 2.1 implies that:

dStf+1(0) <1+ min (dstf(c —1),dst!(c + 1))
<1+dsti(c—1)

So dstf_H(c) = 1+ dstt(c—1). But HSL, therefore (4) Stal(c).



— In the second case, Staf(c) is obtained by hypothesis.

Lemma 2.7 (A stable cell with dst = 0 is a border).
Vite, Stal(c) A dsté(¢) = 0 = Brdi(c)
Proof. Let ¢. The proof is made by case on ¢:

e Ift = 0, let c. We assume that Staj(c) and dst}(c) = 0. Brdj(c) is
obtained (4) with the hypothesis Staf(c).

o Else, let c. We assume that Staf+1 (¢) and dsthrl (¢) = 0. The proof is
made by case (4) on the hypothesis Stay_ ; (c):

— In the first case Brdf +1(c) is obtained by hypothesis.

— In the second case we have dstfH(C) = 1+ dst!(c — 1), which
contradicts dst? 4+1(c) =0.

— In the second case we have dstfH(C) =1+ dst{(c + 1), which
contradicts dst! +1(e)=0.

O
Corollary 2.8 (A non-border Middle has a distance > 0).
Vete, = Brdi(c) A Mid!(c) = dsti(c) > 0

Proof. By using the contraposition of the lemma 2.7 on the hypothesis — Brdf (c)
we have — Sta’(c) or dst(c) # 0.

But by using the lemma 2.6 on the hypothesis Mid’(c) we have Sta’ (c).

So dstt(c) > 0. O

Lemma 2.9 (At layer 0, the cells end up being awaken).
3t, Ve, Inp,(c)

Proof. By axiom 1.2, there exists at least one general. Therefore, the input
field propagates until every cell is awaken. O

Remark. An explicit formula could be found, using the initial position of the
generals.



3 MONOTONICITY

In this section we prove monotonicity properties for the fields, which means
that if the property is verified for a given ¢, then this property is verified for
every t' > t.

Lemma 3.1 (Inp is monotone).
Vete, Inps(c) = Inpy, 4 (c)

Proof. Let/,t and c.
The hypothesis Inp! (c) implies Inp! +1(c) by using the equation (1). [

Lemma 3.2 (Ins monotone implies dst is increasing).
Ve, (th Ins!(c) = Insfﬂ(c)) = (Vtc, dstt(c) < dstfﬂ(c))
Proof. Let ¢, and we assume:
Vtc, Inst(c) = Ins};(c) (Hins)
The proof is made by induction on ¢:
e If t = 0, then (6) dst!(c) = 0, therefore dst’(c) < dstfﬂ(c).

e We assume that:
Ve, dstt(c) < dstf+1(c) (IHy)

Let c. We proove by case that dstf+1 (c) < dstf+2(c):

— IfInst, () then (6) dst’, () = 1+min (dstf i(e—1),dstly (c+ 1)).

But by using /H,; we have that dst!(c — 1) < dstfﬂ(c — 1) and
dsté(c+1) < dstf+1(c + 1), s0:

1+ min (dstf(c —1),dstt(c+ 1)) < dstf+2(c)

Therefore, by using the lemma 2.1, we have dst? 41(0) < dst? 1a(c).

- If = Ins! 4o(c) then (6) dst? 42(c) = 0. Moreover, by using the
contraposition of H,,s we have —Ins;_ ;(c), so dst? 41(c) =0
too. Therefore, in any cases, dst? 41(0) < dst? 4o(c).

O
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Lemma 3.3 (Brd and Ins monotone implies a stable dst is constant).

Ve, (Vtc, Brd!(c) = Brdfﬂ(c)) = (Vtc, Inst(c) = Insf+1(c)>

= (Vtc, Staf(c) = dstf(c) = dstf_H(c))
Proof. Let ¢. We assume that:
Vtc, Brd;(c) = Brdy,(c) (HBra)
Vte, Inst (¢) = Insfﬂ(c) (Hins)
We prove Vitc, Stal(c) = dst!(c) = dst! +1(c) by induction on ¢:

e If t = 0 then (4) the hypothesis Staf(c) implies Brd(c), so according
to Hpyq we have Brdi (¢) too. Therefore, according to the lemma 2.4,
we have dst}(c) = 0 = dst{(c).

e We assume the induction hypothesis:
Ve, Stal(c) = dstt(c) = dstf_H(c) (IHy)
Let c. We assume the hypothesis:
Stay(c) (Hsta)
We prove dstf_s_1 (c) = dstf+2(c) by case (4) on Hga:

- If Brd! +1(c) then according to Hp,q we have Brd! 42(c) too.
Therefore, according to the lemma 2.4, we have dstf 41(c)=0=

¢
dsty, 5 (c).
— In that case, we have:

dStf-H(C) =1+ dStf(C -1) (Hast)

Stal(c—1) (Hsta2)

Firstly, by using Hg,2 and the induction hypothesis /H; we have
dsti(c—1) = dstfH(c — 1), so by using Hgst, we have :

dstfH(C) =1+dsti(c—1)=1+ dstf+1(c -1)
Moreover, by using the lemma 2.1, we have:

dsthrz(c) <14 min (dstfﬂ(c -1, dstfﬂ(c + 1))
< 14dsth g (c—1)
< dStf+1(C)

11



Secondly, by using Hr,s and the lemma 3.2:
dstys (¢) < dstyyo(c)

Therefore, we proved the equality.

— Ifdst; (c) = 14dstt(c+1) and Staj(c+1), the proof is similar
to the previous case.

O
Lemma 3.4 (Brd and Ins monotone implies Sta monotone).
Ve, (Vtc, Brd!(c) = Brdfﬂ(c)) = (Vtc, Ins(c) = Insfﬂ(c))
= (Vtc, Stat(c) = Stafﬂ(c))
Proof. Let ¢. We assume that:
Vtc, Brdy(c) = BrdL,(c) (HBra)
Vtc, Ins’f(c) = Insfﬂ(c) (Hins)

We prove Vtc, Stal(c) = Stal +1(c) by induction on ¢:

e If t = 0 then (4) the hypothesis Staf(c) implies Brd(c), so according
to Hp,q we have Brd(c) too. Therefore, we have (4) the first case of
Stal(c).

e We assume the induction hypothesis:
Ve, Stal(c) = StafJr1 (c) (IH}¢)
Let c. We assume the hypothesis:
Star_(c) (Hsta)
We prove Staf+2 (c) by case (4) on Hgga:

- If Brd! +1(c) then according to Hp.q we have Brd! 4o(c) too.
Therefore, we have (4) the first case of Sta 1a(c).

— In that case, we have:

dsti,q(c) = 1+ dstf(c— 1) (Hgst)

12



Stal(c—1) (Hsta2)
By using Hp;q, Hms and the lemma 3.3, Hg,2 implies that:
dstf(c — 1) = dstfyq(c — 1) (H)
Firstly, by using the lemma 2.1 then H then H 44, we have:
dstf+2(c) <1+ min (dstfﬂ(c - 1), dstfﬂ(c + 1))
<1+dsty,q(c—1)

=1+dsti(c—1)
= dstf+1(c)

Secondly, by using Hi,s and the lemma 3.2, we have:
dStfH(C) < dstf+2(c)
Therefore dstf_H (c) = dstf+2(c). So, by using Hgst then H:

ds‘chr2 (c) = dstf+1 (c)
=1+dsti(c—1)
=1+dsty, (c—1)

Moreover, by using Hgt,2 and the induction hypothesis IH; we
have Sta! 4+1(c = 1). Therefore (4) we proved Sta! 4a(c).

- If dstf_H (¢) = 14dst!(c+1) and Stal(c+1), the proof is similar
to the previous case.

O
Lemma 3.5 (Brd and Ins monotone implies Mid monotone).
Ve, (Vtc, Brd!(c) = Brdf_i_l(c)) = (Vtc, Inst(c) = Insf_H(c))
= (\ﬁc, Mid?(c) = Mid’ +1(c))
Proof. Let ¢. We assume that:
Vie, Brdf(c) = Brdf_H(c) (Hgrq)
Vie, Inst(c) = Insf_H(c) (H1us)

We prove Vtc, Mid!(c) = Midf_s_1 (c) by case on t:

13



e If t = 0 then (5) Mid!(c) is False, so the implication holds.
o Ift =t 4 1, let ¢, and we assume the hypothesis:
Mid} 4 (c) (Hytia)
We prove Midf,+2(c) by case (5) on Hyiq:
— In the first case, we have:

dstf,_H(c) > max (dstf, (c—1),dst (c+ 1)) (Hast)

Stay, (c — 1) (HsiaL)
Stal,(c+1) (HstaR?)
By using Hp,q, Hiys and the lemma 3.3:
% Hggo L implies that dst!, (¢ — 1) = dstfurl(c -1)
% Hggo R implies that dst}, (c + 1) = dstf, (¢ + 1)

Therefore, we have:

max (dstf, (c—1),dst (c+ 1)) = max (dstf,+1(c -1, dstfurl(c + 1))

(Hmax)
So, by using Hi,s and the lemma 3.2, then H gy, then Hyp,y, wWe
have:

dstf/_,’_z(c) Z dstf/+1(c)
> max (dst’ (¢ — 1), dst’ (c + 1))
= max dstf/H(c - 1),dstf,+1(c + 1))

Moreover, by using Hp,q, Hins and the lemma 3.4:
* Hgy, L implies that Stafurl(c -1)
% Hgyo R implies that Stay, ,; (c + 1)

Therefore, we have the left part of Mid?, 4o(0).

— In the second case, we have:

dstfurl(c) = max (dstf, (¢ —1),dst, (c+ 1)) (Hagst)

Staf, (C - 1) (Hstal)
Stal, (c) (Hsta0)
Stal (c+1) (HstaR)

By using Hp,q, Hins and the lemma 3.4:

14



% Hgya L implies that Staf, ., (c — 1)

* Hgy,C implies that Stal, 41(0)

* Hgio R implies that Staf,+1(c +1)
Therefore, to obtain the right part of Mid/, 4o(c), it remains only
to prove that dstf/+2 (¢) = max (dstf/+1(c - 1), dstf,+1(c + 1))

By using Hg,q, Hins and the lemma 3.3, Stafurl (c) implies that:
dstlr 1 (c) = dsthro(c) (Hast2)

By using Hp,q, Hins and the lemma 3.3:
s Hggo L implies that dst!, (¢ — 1) = dstfurl(c -1
s Hgyo R implies that dst?, (c 4+ 1) = dstf,_H(c +1)

Therefore, we have:

max (dstf,(c —1),dst}, (¢ + 1)) = max (dstf,ﬂ(c —1), dstfurl(c + 1))

(Hmax)
So, by using Hggt2, then Hgst, then Hpax, We have:

dstfur? (c) = dstfurl(c)
= max (dst}, (¢ — 1), dstl (¢ + 1))
= max dstfurl(c -1), dStf/+1(C + 1))

Therefore, we have the right part of MidY, 1a(c).

O
Lemma 3.6 (Brdl and Ins’ monotone implies Brd‘*! monotone).
Ve, (Vtc, Brd!(c) = Brdfﬂ(c)) = (Vtc, Inst(c) = Insf+1(c))
= (Vtc, Brd!™(¢) = Brdfﬂ (c))
Proof. Let ¢. We assume that:
Vte, Brd:(c) = Brdy,(c) (Hgra)
Vtc, Inst(c) = Inst (c) (Hins)

Let t and c. We prove Brdfﬁ (¢) by case (2) on the hypothesis Brd! ™ (¢):

15



e In the first case, we have Brdf(c), so by using Hp,q we have Brdf 41(0).

Therefore (2), we proved the left part of Brdﬁj (o).

e In the second case, we have Mid(c).
So, by using Hp;q, Hins and the lemma 3.5 we have Midf+1 (o).
Therefore (2), we proved the right part of Brdf_flL (¢).

O
Lemma 3.7 (Brd® and Ins monotone implies Ins*! monotone).
Ve, (Vtc, Brd!(c) = Brdfﬂ(c)) = (Vtc, Inst(c) = Insf+1(c))
= (Vtc, Ins{ ™ (c) = Insffr%(c))
Proof. Let £. We assume that:
Vtc, Brdy(c) = BrdL,(c) (Hpra)
Vtc, Inst(c) = Inst, (c) (Hins)
We prove Ins; ™ (c) = Ins; | (c) by case on t:
e Ift = 0 then (3) Inst ™! (c) is False, so the implication holds.
e Ift =t + 1, let c. The hypothesis Insf,trll(c) implies (3):
Ins} 4 (c) (Hins2)
Staf,_H (c) (Hsta)

dstf,+1(c) <dst(c—1)Vv dstf/_H(c) <dsth(c—1)  (Has)
By using Hiys, Hins2 implies that Insf,+2(c).
Moreover, by using Hp.q, Hins and the lemma 3.4, Hgq, implies that
Stal, 1a(c).
Therefore, to obtain Insf,il2 (c) , it remains only to prove that dst?, 4o(e) <
dstflﬂ(c —-1)v dSt§/+2(0) < dstf,ﬂ(c —1).

Notice that by using Hp,q, Hins and the lemma 3.3, Hgq, implies that:
dstfurl(c) = dstfurz (c) (H)
We prove dstf,+2(c) < dstfurl(c -1V dstf,+2(c) < dstfurl(c -1

by case on Hggt:
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— In the first case, we have dst/, 41(0) < dst, (¢ — 1).
So, by using H, then the case hypothesis, then Hy,s and the
lemma 3.2, we have:

dstlro(c) = dsthr (c)
< dstl(c—1)
< dstf,H(C -1

Therefore, we proved the left part of dst?, 4o(c) < dst?, 41(e—
1) Vdsty, o(c) < dsth,q(c — 1).

— The case dst/, 4110 < dst?, (c+1) is similar, and proves the right
part of dstf/+2 (c) < dstfurl(c—l)\/dstfurz (c) < dstfurl(c—l).

O

Proposition 3.8 (Brd and Ins are monotone).
Ve, (Vtc, Brd{(c) = Brdf+1(c)) A (Vtc, Inst(c) = Insﬁﬂ(c))

Proof. The proof is made by induction on ¢:
e If ¢ = 0, we prove the two parts separately:

— Let t and c. The hypothesis Brd} (c) implies (2) that Inp, (c) and
l=cVec=n.
So, by using the lemma 3.1, we have Inp, ;(c) and 1 = cVc = n.
Therefore (2) we proved that Brdy, ; (c).

— Let t and c. The hypothesis Ins(c) implies (3) that Inp, (c) and
l1<ce<n
So, by using the lemma 3.1, we have Inp,  ;(c) and 1 < ¢ < n.
Therefore (3) we proved that Ins}, ; (c).

e We assume the induction hypothesis:
Vte, Brd:(c) = Brdy,(c) (IH%, 1)

Vtc, Ins}(c) = Insj 4 (c) (IHT,,)

By using IHfgrd, Ians and the lemma 3.6, we have:

Vie, Brdi (¢) = Brdfi% (c)
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By using IHfgrd, Ians and the lemma 3.7, we have:
Ve, Insi T (¢) = Insfﬁ (c)

Therefore, we proved the induction step.

Corollary 3.9 (Brd is monotone).
Vete, Brd! (c) = (w’, ¥ >t= Brdf,(c))

Proof. Let (, t and c. We assume the hypothesis Brd! (c).
Let t'. We prove Brd/, (¢) by case on the hypothesis ¢’ > ¢:

e Ift' = t then Brd’ (¢) by hypothesis.

o If ' = t” + 1 with # > ¢ such that Brd’, (c), then by using the left
part of the proposition 3.8 we have Brd’,, 41(c). Therefore Brd/, (c).

O

Corollary 3.10 (Ins is monotone).
Vete, Inst (c) = (Vt', t' >t = Ins, (c))

Proof. The proof is similar to the previous one, and uses the right part of the
proposition 3.8. O

Corollary 3.11 (Sta is monotone).
Vite, Stal(c) = (Vt',t' >t = Stal, (c))

Proof. Let ¢, t and c. We assume the hypothesis Staf(c).
Let t'. We prove Stal, () by case on the hypothesis ¢’ > ¢:
e Ift = t then Stal, (c) by hypothesis.

o Ift/ =t 4 1 with t > t such that Sta’,, (c), then by using both parts
of the proposition 3.8 and the lemma 3.4 we have Sta’,, 11(0).

Therefore Stal, (c).

18



Corollary 3.12 (Mid is monotone).
Vete, Mid!(c) = (Vt’, ¥ >t= Midf,(c))

Proof. The proof is similar to the previous one, and uses both parts of the
proposition 3.8 and the lemma 3.5. O

Corollary 3.13 (dst is increasing).
Vitet' ,t' >t = dst’ (¢) > dstl(c)
Proof. Letl, t,cand t’.
We prove dst’, (¢) > dst?(c) by case on the hypothesis ¢’ > ¢:
o Ift/ =t then dst!, (¢) = dst!(c), therefore dst’, (¢) > dst’(c).
e In that case t' = t” + 1 with ¢ > ¢ such that dst’, (¢) > dst!(c).

Therefore, by using the right part of the proposition 3.8 and the lemma
3.2, then the hypothesis, we have:

dstt (c) = dstf,,+1(c)
> dstt, (c)
> dst!(c)

Corollary 3.14 (A stable dst is constant).
Vite, Stal(c) = (Vt’, >t = dsth(c) = dstf(c))
Proof. Let ¢, t and c. We assume the hypothesis Staf(c).
Let t'. We prove Brd!(c) by case on the hypothesis ¢’ > ¢:
o Ift’ = ¢ then dst’, (c) = dst’(c).
e In that case t = + 1 with ¢ > ¢ such that dst’, (¢) = dst!(c).

By using the hypotheses Stal(c) and ¢ > t, and the lemma 3.11, we
have Stal, (c).

So, by using both parts of the proposition 3.8 and the lemma 3.3 we
have dst,, (¢) = dst’, +1(c). Therefore:
dstt, (¢) = dstf,,+1(c)
- dstf// (C)
= dsté(c)
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4 LIGHT CONES

The condition b; + 2 < by ensures not only that b; < bo, but also that there
is a cell between them, because boundaries between light cones are not light
cones themselves. This excludes the regions of the final layer to be called
light cones, so the results of this section are only for the phase transition.

Remark. The choice to exclude the final regions can be justified by the fact
that this is the first time the region alone cannot determine the middle, because
a middle needs 3 cells to appear and not only 2.

In the following example, there is seven cells, and the generals are the
cells 1 and 7. Att = 5 the cell 4 becomes the middle of the region and the
evolution becomes stable. The informations leading to the middle at ¢ = 5
traveled from the entire region at ¢ = 2, which is the “Light Cone” of the
middle. Notice that some cells may not be awaken at this time, but they are
all border or inside after the first step of the Light Cone.

cells 1(2(3|4]|5|6|7
time

t=01]0]. .10
t=11]0]1]. .|11]0
t=2)0(1|1|.|1]|1]|0
t=3]0(1|1[2|1]|1|0
t=41]0(1]2[2|2]|1/|0
t=51(01]2|3|2|1]0

So, in this example it is true that at the layer £ = 0 and the date ¢ = 2 the
region between the borders 1 and 7 is a Light Cone for the middle to come.
This will be denoted by LC9(1, 7) in the following definition:

Definition 4.1 (Light Cones).
LCL (b1, b2) ® by +2 < by A Brd! (b1) A Brd! (by)
A (Vc, by <c<by = Insfﬂ(c)) (7
Corollary 4.2 (Light Cone at layer 0).
3t,LCY(1,n)

Proof. Firstly, by axiom 1.1, n > 2.
Secondly, by using the lemma 2.9 there exists ¢ such that for every cell c,
Inp,(c). So:
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e We have (2) that Brd (1) and Brd? (n)

e We have (3) for every 1 < ¢ < n that InsY(c). So, by using the corol-
lary 3.10, for every 1 < ¢ < n we have that Ins} ; (c).

Therefore (7) LCY(1, 7). O

In the following, § will denote the floor function of the half : the half of a
if a is even, and the half of ¢ — 1 if a is odd.

Proposition 4.3 (Running of a Light Cone).

by — b
Vltbybo, LCE (by,by) = VO < d < 2L
K 2

dsty 4(by +d) = d A Stal_4(by + d)
Adstt, 4(ba —d) = d A Stal, 4(bs — d)

A (v by+d < c<by—d,dstl, () > d)

Proof. Let £, by, by and t. We assume that LCf(bl, b2).
The proof is made by induction on d :

e In this case, d = 0.

Because LCY(by,bs), we have that Brd!(b;) and Brd!(by). So, by
using the lemma 2.4 we have that dst!(b;) = 0 and dst’(by) = 0, and
by definition (4) we have that Sta! (b;) and Sta’(b,).

Moreover, for every by < ¢ < by we have dst!(¢) > 0 because dst is
an integer field.

e We assume thatd +1 < @ Sod < % too, and we have the
induction hypothesis:

dstt, 4(b1 +d) = d A Stay, 4(by + d)
Adsti4(by — d) = d A Stal, 4 (by — d)
A (Vb1 +d<c<by—ddstl, ,(c) > d)
Firstly, we prove that for every by + (d+1) < ¢ < by — (d+ 1), we have :

dstf+(d+1)(c) =1+ min (dstf+d(c - 1), dstf+d(c + 1)) (H.)
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Indeed, if by +(d+1) < ¢ < by—(d+1) then by transitivity we have b; <
¢ < by. So, because LC} (b1, bz) we have Insy,;(c). So, by monotonicity
(lemma 3.10) we have Insf +(d+1) (¢). Therefore, by using the equation (6),

we have that dsthr(dH)(c) =1+ min (dstf+d(c — 1), dstt 4(c+ 1))
The proof is made by case on c :
e Inthat case, c = by + (d + 1).

Because d+1 < @, we have 2d+2 < by —bq, s0 b1 +d+2 < by—d.
So by +d < by +d+2 < by —d, and by using the induction hypothesis
we have dstf+d(b1 +d+2)>d.

Moreover, by using the induction hypothesis, we have dstf 1a(bi+d) =
d, so dstf_,_d(bl +d+2)> dstf+d(b1 +d).

By using H. with ¢ = b; +d + 1, we have :
dstf+(d+1)(b1 +d+1) =1+ min (dsthrd(bl +d), dstf+d(b1 +d+ 2))

=1+ dsty, 4(b1 +d)
=1+d

Moreover, because dstf+(d+1)(b1 +d+1)=1+ dstf+d(b1 +d) and
by induction hypothesis Sta’ +a(b1 + d), we have by definition (4) that
Stag g1y (b1 +d+ 1).

e The case ¢ = by — (d + 1) is similar, by using the induction hypothesis
dstt 4(by — d) = d and Stal, ;(by — d).

o Ifby +(d+1) < ¢ <by— (d+1), then we have :
bi+d<c—1<by—d—2<by—d

hh+d<b+d+2<c+1<by—d

So, by using the induction hypothesis we have dst! 4+q(c—=1) > dand
dstt, 4(c+1) > d.

Therefore, by using H. we have :

dsthr(dH)(c) =1+ min (dsthrd(c -1), dstf+d(c + 1))
> 1+ min (d, d)
=1+d
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Corollary 4.4 (End of a Light Cone).
ba — by

Vltbyby, LCE (by, by) = Vd <

)

dsty, oy (b1 +d) =d A Sty , oy (b1 +d)

4
b —b;
=5

A dst (by —d) =d A Staf+b2;bl (by — d)

Proof. By using the corollaries 3.11 and 3.14, this is a direct corollary of the
previous proposition. O

Notice that for a Light Cone LCf (b1, b2), bo — by + 1 is the number of cells
forming the Light Cone, boundaries included.

Corollary 4.5 (Middle of an odd Light Cone).
Vetby by, LCY(by, by) A by — by + 1odd

b1+bz)
2

0
= Mldt+b2;b1 (

Proof. Because LCf(bl7 ba) we have by + 2 < b, so % >1.
Because by — by + 1 is odd, we have :

by +b2+1 by + by

2 2
b2—b1 b1+b2
—1) = -1
b1+( 5 ) 5
bg*bl b1+b2
by — —-1)= 1
1 < D) > 9 +

Because LCf(bl, b2), by using the proposition 4.3 for d = b25b1 —1 we have:

b1 + ba by — by b1 + bo
dstf+b2;b1_1( B) —1) = 7—1/\Staf+b2;b171( B —1)

b1+bg bgfbl b1+b2
dstf+h2;,,_l( ot = 71AStaf+b2gbl_1( o+

Because LCf(bl7 b2), by using the proposition 4.3 for d = % we have:

b1 + bo
2

by by

) 2

14
dStH_bz;bl (
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So, by denoting m = %522 we have :

dstf+@(m) > max (dstf_F@_l(m - 1)’d8tf+ bty _1(m + 1))

with Staf+h2;b1 _,(m—1)and Stauf+ b=ty _(m+1).
Therefore by definition (5) Midf Ll2oh (m).

Corollary 4.6 (Middles of an even Light Cone).

Vltb by, LCE (b1, by) A by — by + 1even

by +by—1

)
= Mldt-‘r 132712714,1 ( 2

. by +b2+1
AMid o, _
) 1 1482 1271+1( 92 )

Proof. Because LCf(bl, b2) we have by + 2 < bo, so because by — by is odd
we have bz—le_l > 1.

Because by — by + 1 is even, we have :

by+by+1  by+by—1
2 - 2

by —b; —1 b by — 1
b1+<221_1>:1+2_1

+1

2

bl_<b2_21_1_1>:bl+b2+1+1

2
Because LCY (b1, bs), by using the proposition 4.3 for d = b“’_‘%

— 1 we
have:
by +bs—1

by — by —1
erbz—gl—lil(f 1) =0 -

2

. by +by—1
with Staf+b2_gl_lfl(f -1)

dst 1

by +b2+1 by —b; — 1
dstf+%71(72 +1)=——7— -1

. by +b2+1
with Staﬁbzfgrl,l(f +1)

So, by monotonicity (lemmas 3.11 and 3.14), we have :

dstl bl+b2*1_

by — b1 —1
t4ba=bi=t (f =——"-

1
2

by +bp—1
: 4 1 2
with Stat+52_gl—1 (f - 1)
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ds‘uf_ir%(bl+bf2+1 +1) = ly?ibflil 1
with Staf+z,2,z;71,1(w+“ +1)
Because LCf(bl, by ), by using the proposition 4.3 for d = % we have:
dstf+w(bl+z2_l) = b _Zl =
with sw@w(bl”ﬁ?_l)
dsti_%(bl +l272+1) _ by *1271 -1
with Staf+z,2,712,1,1 (bl—’—bfz“)

Notice that bz—le_l +1= w So, by monotonicity (lemma 3.14), we

have : b1 +by—1 b — by — 1
) 1+02—10  ba—06; —
sty maopn () = =
by +b2+1 by — b1 —1
sty sy (T ) = =3
So, by denoting m; = 5'14“12’72_1 and mo = MQQH we have :

dstf+b2—l2;1+1 (m1) = max (dstf+b273171 (my — 1),dstf+ bp=bi-1 (mq + 1))

2

. ¢ L 4
with Sta, by (my —1), Sta, by=bi=1 (mq) and Sta, by —v; -1 (mq+1).

Therefore by definition (5) Midf+ bybr 41 (mq).

dstf+b2—gl+1 (mg) = max (dstf+b273171 (mg — 1),dstf+ bpby=1 (ma + 1))

2

Therefore by definition (5) Midf L hambit (m2). O

. ¢ L 4
with Stat+ by (mg—1), Stat+ PR (mg) and StaH_ by—by—1 (M2 +1).

In every case, we have MidfJr CETES (%) A Mider ba—by 1 (“**572“)

but we thought the presentation clearer by separating both cases.

i

Lemma 4.7 (The other cells of a Light Cone are not Middles).

by — b
Vit by, LC (b, ba) = VI >t ==L v,

<b1§c<b1+b2\/b1+b2+1

9 5 <c< bg) = —\Midf/+1(c)
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Proof. Let/, t, by and by. We assume the hypothesis LCf(bl, ba).

Lett' >t + % and let ¢ be a cell.

Firstly, we prove that c = by +dorc = by —dwith0 < d < % The
proof is made by case on c:

o Ifb; <c< bl;”’? , b1 < cimplies that ¢ = by + d. Moreover:

by +b
Wehave by +d =c < 1;2
bl + b2 b1 + bQ 2b1
Therefore d — b = _ =27
erefore d < 5 1 B 3
by +by —2b by — b
Therefore (see remark) d < — * ; 1_ 22 5 1

o If btbatl < ¢ < hy, ¢ < by implies that ¢ = by — d. Moreover:

b b 1
We have by —d = ¢ < %
b b 1 2 b b 1
Therefore d < by — brtbetl 202 bl
2 2 2
2by — b1 — b by — b
Therefore (see remark) d < ——= 21 2_ 22 5 1

By using the hypothesis LCY(by, by) and the corollary 4.4 on ¢ = by + d or
¢ = by — d, we have that:

4
dStH_ ba—by (¢)=dA Staf+ ba—ty (¢)

Therefore, because t' +1 >t/ > t+ b2§b1 , by using the lemma 3.14 we have
that:

dstf ., 1(c) =d (Ha)
Secondly, because 0 < d < @, we havethat 0 < d+ 1 < %
So, by using the hypothesis LC! (b, by) and the corollary 4.4 with d + 1,
we have that:
dsty byony (b1 + (d+1)) = d+ 1T AStay, e, (b + (d+1))  (Hp)
2 2
dst? o, s (o — (d+1)) =d+1AStal 4, s, (by— (d+1)) (Hg)
t4257L t4 22501

We prove that d + 1 < max (dstf/(c —1),dst} (¢ + 1)) by case on c:
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o Ifby <c< 1t wehavec=1b; +d,s0b; + (d+1) =c+ 1.

Therefore, by using Hy,, we have that:
dstf+%(c+ =d+1A Staf{_@(ch 1)
So, because t’ >t + %, by using the lemma 3.14 we have that:
dsté(c+1)=d+1
Therefore: d + 1 < max (dstf, (c—1),dstl (¢ + 1))

° Ifbﬁbfz“<c§b2,wehavec:b2—d,sobg—(d+1):c—l.

Therefore, by using Hp, we have that:
dStf+b2;b1 (C — 1) =d +1A Staf+52;b1 (C — 1)

So, because t’ >t + ngbl , by using the lemma 3.14 we have that:

dsté(c—1)=d+1

Therefore: d + 1 < max (dstf, (c—1),dsth (c+ 1))

We prove — Mid’, +1(c) by contradiction. If Mid?, +1(c) then, by using the
lemma 2.2, we have that:

dstflﬂ(c) > max (dstf,(c —1),dst! (¢ + 1))
So, by using H;, we have that:

max (dstf,(c — 1), dsté (¢ + 1)) <d

Butd + 1 < max (dstf, (¢ —1),dsth (¢ + 1)), hence the contradiction. [J

Remark. In the previous lemma there is some parity problems to fix, wich
should be proven in the appendix or found in the Coq library.

The previous lemma can be generalized by using the monotonicity of the
Mid field:

Corollary 4.8 (The other cells of a Light Cone are not Middles).
Vltby by, LCE (by, by) = V',

1
<b1§c<b1;b2\/b1+g2+

<c< bg) = = Mid, ()
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Proof. The proof is made by case on t':

o Ift' <t 22b1 we prove — Mid’, (¢) by contradiction.
We assume that Midf, (¢). So, by using the lemma 3.12 we have that
Y
Mid, bt L1 ().

But, by using the previous lemma with t+%, we have that — Midf R (o),
2

hence the contradiction.

o Ift/ >t 2ot 4]

By using the previous lemma with ' — 1 > ¢ + @, we have that
- Midf/ (C) .

O
Lemma 4.9 (Each true Middle comes from a Light Cone).
Vetm, = Brdt(m) A Mid:(m)
= LC!_  (m—d,m+d)
VLG (g11)(m = (d+1),m + d)
VLC]_(gy1)(m — d,m+ (d + 1))
where d = dst! (m)
Proof. To do ! I already proved it, I will recopy soon. O
Corollary 4.10 (A Middle induces a new Light Cone).
Vetmd, Mid?(m) A dstf(m) =dAd > 2
=V, (Brdf,(m —d)= LC" (m — d, m))
A (Brdf, (m +d) = LCH (m,m + d))

Proof. Because dst!(m) = d > 2, Mid’(m), by using the contraposition of
the lemma 2.4, we have that — Brd! (m).

The proof is made by case on the border. We assume Brdf, (m — d), but
the proof in the case Brd!, (m + d) is similar.

Because — Brd:(m) and Mid!(m), by using the previous lemma we have
that LC;_ y(m—d, m+d) or LC{_ (4, 1) (m—(d+1), m+d) or LC{_ (4, 1) (m—
d,m+ (d+1)).
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By definition (7)., if LC;_ (4 1y(m — (d+ 1),m+ d) then Ins;_,;(m — d).
So, by case t/ < t —d ort —d < t' and by monotonicity, we obtain a
contradiction dy using the lemma 2.3. So we have :

LC_y(m —d,m +d) \/LCf,(dH)(m—d,m—i— (d+1)) (Hrc)

In every case, by using the lemma 4.4 we have for every ¢« < d that
dsté(m — d +14) = i and Stal (m — d + i).

So, by using the monotonicity, for every m — d < ¢ < m, we have
dstt.q(c) + 1 = dsti(c+1).

Moreover, by using the monotonicity, Sta! 11(e).

Moreover, by using Hy,¢ and the definition (7) and the monotonicity, we
have Ins! 41(0).

Therefore, by definition (3), we have Insfﬁ ().

Moreover, by using H, ¢ and the definition (7) and the monotonicity, we
have Brdy, ;(m — d). So, by definition (2) Brd1{(m — d).

Moreover, by using Hy ¢ and (the lemma 4.5 or the lemma 4.6) and the
monotonicity, we have Mid! 4+1(m). So, by definition (2) Brdfﬁ (m).

Moreover, by hypothesis d > 2, s0 (m — d) + 2 < m.

Therefore, by definition (7) we have LC! T (m — d, m). O

Lemma 4.11 (One Brd and one Mid at previous layer of a Light Cone).
Vltby by, LCH (by, by)
= (Brdf (b)) A = Brd’ (by) A Mid’ (by) A dst’(by) = by — b1>
v (ﬁ Brd! (by) A Mid?(b) A Brd’(bs) A dst’(b;) = by — b1>

Proof. To do ! I already proved it, I will recopy soon. O

5 MIDDLES

Lemma 5.1 (Paired Middles appear at the same time with the same distance).

Vet tamima, Midf1 (mq) A Midf2 (m2) A (ma=mq1 +1Vm; =mg+1)
= Midf1 (ma) A dstf1 (my) = dstf1 (ma2)

Proof. We assume that my = mq +1 (the case m; = mo+1 is symmetrical).
For sake of simplicity, we note c; = m1 — 1 and cg = mo + 1.
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We assume that ¢; < ¢ and we prove the result both for ¢; and ¢,. Notice
that because of the middles, we have ¢1,ts > 1.

We note d; = ds‘cf1 (my) and dy = ds‘cf2 (mg), and we prove that d; = da:

By using the lemma 2.2 on Midf1 (m1) we have that :

d; > max (dstfl_l(cl), dstfl_l(m2)> > dstfl_l(mg)

By using the lemma 2.5 on Midf1 (mq), we have Staflfl(mg). So, by
monotonicity (lemma 3.14), dstfl_l(mg) = dy. Therefore d; > d>.
By using the lemma 2.2 on Midf2 (mg) we have that :

da > max (dstf,_y(m1), dstf,_,(c2)) > dstf, s (m1)

We have two cases on t1 < o :

e In the case t; = to, by using the lemma 2.5 on Midf2 (m2), we have
Staf2_1(m1). So, by monotonicity (lemma 3.14), dsth_l(ml) =d;.

e In the case t; < t9, by using the lemma 2.6 on Midf1 (my) we have
Staf1 (mq). So, by monotonicity (lemma 3.14), dstf2_1(m1) =d;.

In every case, we have do > di, and because we proved d; > d3, we have
dy = da. So, in the following d; and d, will be denoted by d.

Because dstf1 (m) =d= dstflfl(mg), the middle m; verifies the sec-
ond case of the equation (5). In particular, we have that Stauflf1 (mq). So, by
monotonicity (lemma 3.14) we have ds‘cfl_1 (mq) = dstf1 (mq) =d.

We have two cases on d :

o If dstfl_l(mg) = d = 0, because Stafl_l(mQ), by (4) we have
Brdfl_l(mg)... (Not finished, but this case may not be necessary, be-
cause it cannot happen in the case { = 0 by axiom n > 2 and the
definition (2) of Brd, and this lemma is only used in that case.)

o If dstflfl(mg) = d > 0 (In that case, because the distance is 0 at ¢t =
0, we have t; — 1 > 0, so we can write ¢, — 2.), because Stafrl(mg),
by (4) we have two cases:

- dstfl_l(mg) =1+ dstfl_g(ml) A Stafl_Q(ml)
In that case, because Stauf1 _5(m1), by monotonicity (lemma 3.14)
we have dstfl_z(ml) = dstf1 (mqy) =d.
Therefore d = dstfl_l(mg) =1+ dstfl_g(ml) = 1+ d, hence
the contradiction.
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- dstflfl(mg) =1+ dstflﬁ(cQ) A St35172(02).
So dstflfz(@) = d — 1, and by monotonicity (lemma 3.14) we
have dstfl_l(CQ) =d- 1
Moreover, because Stafl_z((:g), by monotonicity (lemma 3.11)
we have Staflil(CQ).
Finally, because dstflfl(mg) = dy and Staflfl(mg), by mono-
tonicity (lemma 3.14) we have dstf1 (mg) =d= dstf1 (mq).

Therefore, we have :

* dstfl_l(ml) = dand dstfl_l(CQ) =d—1,s0:
dst! (mg) = d = max (d,d — 1) = max (dstfl_l(ml), dstfl_l(CQ))
* Stafl_l(ml) and Stafl_l(mg) and Stafl_l(@)
So, by the definition (5), we have Midf1 (m2).
The result can be prove for ¢5 too by using the monotonicity. O
Lemma 5.2 (A Middle has the same distance over time).
Vet tam, Midf1 (m) A Midf2 (m) = dstf1 (m) = dstf2 (m)

Proof. Two cases t; < ty and t, < t;. In every case, a middle is stable,
therefore the distance is the same. O]

Proposition 5.3 (Middles appear at the same time with the same distance).

Vétlml, - BI‘df1 (ml) A h/[ldf1 (ml)

= (wgmg, Mid!, (ms) = Mid’, (ms) A dst!, (my) = dst!, (mg))
Proof. The proof is made by induction on ¢:

e In this case ¢/ = 0.
Let t; and m; such that — Brdg1 (my) and Mid?1 (my).
Let t5 and mq such that Mid?2 (ma).
Because / = 0, by using the lemma 4.2 there exists trc such that

LCY (1,n). We prove Midf1 (m2) and dstf1 (my) = ds‘cf1 (m2) by

tLc
case on the parity of n:
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— If n =n — 14 1is odd, then by using the corollary 4.5 we have
that Mid? .. (%),
Lot =3 2

By contradiction, if m; # &L, then by using the lemma 4.8 we
have that = Midg1 (my ), which contradicts the hypothesis Midto1 (my).
Somq = "T'H
By contradiction, if my # &L, then by using the lemma 4.8 we
have that = Mid(t)2 (ms2), which contradicts the hypothesis Mid(t)2 (ma).
So mo = nTH
Therefore, m; = meo, then by hypothesis Mid?1 (mg), and we
have dst?1 (mq) = dst,?1 (ma).
— If n = n — 1+ 1is even, then by using the corollary 4.6 we have
that Midy, ; » (%) and Midy,  » (% +1).
By contradiction, if m; # % and m; # 5 + 1, then by using
the lemma 4.8 we have that — Mid?1 (my), which contradicts the
hypothesis Midg1 (m1). Somy = Formy = § + 1.
By contradiction, if my # % and my # 5 + 1, then by using
the lemma 4.8 we have that — Mid?2 (mg), which contradicts the
hypothesis Midy, (ms). Soma = 2 orma = 2 + 1.
The proof is made by case:

x If m1 = mo, then by hypothesis Mid?1 (ms), and we have
dst,?1 (mq) = dst?1 (ma).

* If my # mso, then mo = mqy + 1 0or my = my + 1. So,
because Mid?1 (my) and Midg2 (ms), by using the lemma 5.1
we have Mid?1 (mg) and dst?1 (mq) = dst?1 (m2).

e We assume the induction hypothesis:

Vtymy, = Brdy, (m1) A Midj, (m1) (IHy)
.1l Y 14 _ 14
= (wgmg, MidY, (my) = Mid?, (ma) A dst!, (m) = dst’, (mz))

Let ¢t; and m; such that — Brdf;|r1 (my) and Midfj'l (my),andletd; =
dstfj'l(ml).

By using the lemma 4.9, there exists tj = t; — dj or ¢y — (dy + 1),
by =mq —dyormy — (d1 + 1),andb’1 =my+d;ormy + (dl -‘rl)
such that LCf;rl (b1, 0)).

Notice that the case by = m; — (dy + 1) and b} = mq + (dy + 1) is
excluded, so b} — by = 2d; or 2d; + 1, but not 2d; + 2.
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Because LCf,;“l (b1, b)), by using the lemma 4.11, we have that:
either Brd, (b1) A = Brdy, (b)) A Mids, (b)) A dsty, (b)) = bj — by

or —~Brdy, (b) A Midy, (b) A Brdy (b)) A dsty (b1) = b} — by
We denote the border by b and the middle by m¥. In particular, we
have that dstf/1 (mf) = b} — by = 2d; or2d; + 1.
Let to and mq such that Midfjl(mg), and let dy = dstfjl(mg).
By using the same arguments, we have that LCZIr L(by, b}), and at the
previous layer we denote the border by b4 and the middle by m$, with
dstf, (m5) = by — by = 2d5 or 2d3 + 1.
Because — Brdf,1 (m%) and Midf,1 (m%) and Midf,2 (m%), by using the
induction hypothesis IH , we have that Midf/1 (m$) and dstf/1 (m%) =
dstfll (m4).
Because Midf/1 (m$) and Midf,2 (m%), by using the lemma 5.2 we have
that dstf,1 (mf) = dstf/2 (m4).
Therefore dstf/1 (mf) = dstf/1 (mb) = dstf/2 (m¥).
So, because dstfll (mt%) = 2d; or 2d,+1 and dstff/2 (m&) = 2dy or 2dy+
1, by using the lemma 7.1 we have that d; = d».
Therefore dstflﬂ(ml) =dy=dy = dstfjl(mg).
It remains to prove that Midffr1 (ma).

Because — Brdfjl(ml) and Midffrl(ml), by using the lemma 2.8 we
have that ds = d; = dstfjl(ml) > 1.

So dstf/1 (mb) = dstffz (mb) = 2dy or 2dy +1 > 2.
Moreover, because dstf/l (mf) = dstf,2 (mf) = bl — bo, where by and
b, are b and m4 or the reverse, we have b5 = mb — dstf,l (m%) or
by = mb + dstf/1 (mb).

90 1 £ e
Moreover, Midy, (my3) and Brdy, (b3).
Therefore, by using the lemma 4.10, we have LCf,Jr by, bh).

We prove Midfl+1 (m2) by case on the parity of b, — by :

— If b, — by is even, because b, — by = 2ds or 2ds + 1, we have

by — by = 2d 50 2522 = d.
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Because b, — by is even, b, — ba + 1 is odd. So, by using the

lemma 4.5, we have that Mid“*!, (M)
t/ +b2 bo 2
1 2

In that case (by using the previous results of the lemma 4.9), we
have (see remark) ¢t} = t; — d; and by = mg — dg and b, =
mo + ds, SO :

by — b
i?lzﬁ+@:ﬁ+¢:h

1+
by +by  (mg—da)+ (ma+da) 2my
2 2 2
Therefore Midf;|r1 (ma).
If b, — by is odd, because b, — by = 2d or 2ds + 1, we have
by — by = 2dy + 150 2=2F — gy 1 1.
Because b, —bs is odd, b, —ba+1 is even. So, by using the lemma

: bo+bh—1 . botbh+1
4.6, we have that Mid‘ ! (2+72)and Mid“+!, ( 2+by+ ).
t 4+ 2 t’+b2 bo+1 2
1 1 2

by —by+1
2

In that case (by using the previous results of the lemma 4.9), we

have (see remark) ) = ¢; — (dy + 1), so:

by —ba+1

th+ =t +do+1l=t+di+1=1t;

Morevover, there are two cases for by and b):
x by = mg — (d2 + 1) and b, = mq + ds. In that case:

b2+b/2+17(mQ—d2—1)+(m2+d2)+172m2

2 2 g ~ M
Therefore, because Midj‘jm(bﬁg’z—l ), we have that
Mid{ ™ (ms). S

% by = mg — dg and by, = may + (d2 + 1). In that case:
m+h§—1:(mg—@)+um4wb+1y—1:2m2:nw

2 2 2

ba+bh+1

Therefore, because Mid“™,, | 41 (%), we have that
R

Midg ! (mo).
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Remark. The remaining problems in the previous lemma come from the fact
that the cases for the form of the Light Cones “may” not be the same (in
particular even or odd length) for the two middles. Maybe we should prove
that this is the case anyway because at a layer £ the Light Cones have the same
length ?

Lemma 5.4 (Middles have max distance).
Vetm, = Brdf(m) A Mid!(m) = (Vc, dsté(c) < dstf(m))
Lemma 5.5 (Cells with the same distance than a Middle are Middles).
Vetm, = Brd:(m) A Mid!(m) = (Vc, dstt(c) = dstf(m) = Midf(c))
Lemma 5.6 (Middles appear when each cell is stable).

Vetm, - Brdf(m) A Mid:(m) = Ve, Stal (c)

6 SYNCHRONIZATION
Definition 6.1 (Output Field).

Out}(c) 4 False
Outt, () & Brd!(c — 1) A Brd!(c) A Brd!(c + 1) 8)
Lemma 6.2 (The Border Field is True or False).
Vete, Brdi(c) vV = Brd!(c)
Proof. Using the definition or the characterization of bool/Prop fields. O
Lemma 6.3 (The Output fires for every layer).

Vite, OutfH (c) = OUtﬁ% (c)

Proof. Let (, t and c. The hypothesis Out? 41(c) implies (8) that Brdf(c—1)
and Brd!(c) and Brd!(c + 1)
So (2) we have Brd! ™ (¢ — 1) and Brd:™ (¢) and Brd‘ ™! (¢ + 1).
Therefore (8) we proved Outfﬂ (o). O

Lemma 6.4 (Three non-border Middles cannot be adjacent).

Veéte, = Brdt(c) A Mid!(c — 1) A Mid!(c) A Mid{(c + 1) = False
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Proof. We obtain a contradiction by case on ¢:
e If t = 0 then (5) Mid{(c) is False.

e Else t = t' + 1. By hypothesis — Brdf,_H(c), so we can use the lemma
5.3 to prove that:

dstfurl(c -1)= dstflﬂ(c) = dstflﬂ(c +1)

This distance will be denoted by d.

By using the lemma 2.5 on Midf/_H (¢), we have that Sta!, (¢ — 1) and
Stal, (¢ + 1). So, by using the lemma 3.14 on both we have:

dstt, (c—1) = dstf,+1(c —-1)=d
dstl (c+1) = dstflﬂ(c +1)=d

Because ﬁBrdf,H(c) and Midf,_H(c), by using the lemma 2.8 we
have dstf,_H(c) > 0. So (6):

dstf,_H(c) =1+ min (dstf, (¢ —1),dsth (¢ + 1))
=1+ min (d,d)
=1+d

which contradicts dst?, 41(c) =d.

O
Lemma 6.5 (A non-border Middle adjacent to a Border has a distance = 1).
Vete, = Brd (c) A Mid’(c) A (Brdf (¢ — 1) v Brd!(c + 1)) = dst!(c) = 1
Proof. We prove the result by case on ¢:
e If t = 0 then (5) Mid{(c) is False, so we get a contradiction.

e Else t = ¢ + 1. Because ﬁBrdf,H(c) and Mid},, , (c), by using the
lemma 2.8 we have dstfurl(c) > 0. So (6):

dstf,ﬂ(c) =1+ min (dstf, (¢ —1),dsth (¢ + 1))
But (Brdf/H(C -1V Brdf,+1(c + 1)) so by using the lemma 2.4
we have (dstf/H(c —1)=0v dstf,H(c +1)= 0), and by using the
lemma 3.13 we have (dsti, (c—1)=0Vdsti(c+1) = 0).

Therefore, min (dstf, (c—1),dsth (c+ 1)) =0, and dstf,H(c) =1.

36



Theorem 6.6 (The Output Field is synchronized).
Vite, Out!(c) = V', Outt(c)
Proof. We prove Vtlc, Out!(c) = ¥¢', Outt(¢) by case on t:
e Ift =0, let £ and c. By (8), Outé(c) is False, so the implication holds.

e Else, t =t + 1 and we prove Véc, Out},,; (¢) = V¢/,Outl,, (c') by
induction on /:

- Out} . (c) implies (8) Brdy, (c — 1) and Brd}, (c) and Brd}, (c +
1),so(2)wehavec—1=1Vec—1=nandc=1Vec=mn
and c+ 1 =1V c+ 1 = n, which leads to a contradiction (three
variables with distinct values, but only two available values).

— We assume the induction hypothesis:
Ve, Outy, 4 () = Ve, Outyr (') (IH )

Let c. The hypothesis Outt,H( ¢) implies (8) that Brd’™ (¢ — 1)
and Brd’,"*(¢) and Brd5™ (¢ + 1).

For each cell ¢ € {¢ — 1,¢,c + 1}, by using the lemma 6.2 we
have Brd’, (¢/) vV ~Brd% (¢). But because Brd,™ (¢/) implies
(2) that Brd’, (¢/) v Mid’ (¢/), we have two cases: Brd’ (¢/) or
- Brd!, (¢/) A Mid4 ().

We prove V¢, Outffjrll( ') for the eight possible cases:

s If Brd!, (c—1) and Brd’, (¢) and Brd’, (c+1) then (8) Outy 4 (c).
So, by using JH,; we have for every ¢ that Out?, 1(¢).
Therefore, by using the lemma 6.3, we have Outf,trll( .

s If Mid% (¢ — 1) and Mid, (¢) and Mid’, (¢ + 1), we obtain a
contradiction by using the lemma 6.4.

* The other cases are :

- Brd!, (¢ — 1) and Brd’, (¢) and Mid’ (¢ + 1)
. Brdf(c—1)and M1dt (¢) and Brd’ (¢ + 1)
Brd’ (¢ — 1) and Mid?, (¢) and Mid/, (¢ + 1)

- Mid!, (¢ — 1) and Brd, (¢) and Brd’, (¢ + 1)
: Mldf (¢ —1) and Brd’, (¢) and Mid’, (¢ + 1)
d% (¢ — 1) and Mid?, (c) and Brd’, (¢ + 1)
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In every case, there exists a cell m € {¢ — 1,¢,c + 1} with
is a middle, not a border, and is adjacent to a border. So, by
using the lemma 6.5 we have dst!, (m) = 1.

Let ¢’ be a cell. By using the lemma 5.4 we have that:

dsté (¢/) < dsth, (m) =1

We prove that Brd’," (¢/) by case on dst’, (¢/):

- In the case dst,(¢') = 0, by using the lemma 5.6 we
have that Stal, (¢/), so by using the lemma 2.7 we have
that Brd’, (¢).

- If dstl,(¢/) = 1, by using the lemma 5.5 we have that
Mid!, (¢).

Therefore, in every case Brd’,™ (¢/).

We proved it for every cell ¢/, so we have Brd,"*(¢/ — 1) and
Brd!"*(¢/) and Brd!,"* (¢ + 1), therefore Outf,tll ().

O

7 APPENDIX

Lemma 7.1.

Vndids,(n =2dyVn=2dy +1)AN(n=2dsVn=2ds+1) = dy =do
Proof. The proof is made by case on n:

e In this case, n is even.
Because n = 2d; V n = 2d; + 1 and n is even, we have that n = 2d;.
Because n = 2d; V n = 2ds + 1 and n is even, we have that n = 2ds.

So 2d; = 2ds, therefore d; = d».

e In this case, n is odd.
Because n = 2d; Vn = 2d; +1 and n is odd, we have that n = 2d; +1.
Because n = 2dyVn = 2ds+1 and n is odd, we have that n = 2d,+1.
So 2d; + 1 = 2ds + 1, therefore d; = ds.
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