
April 5, 2016

Studies in Weak Arithmetics

Patrick Cégielski, Ali Enayat,
Roman Kossak

April 5, 2016

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION

April 5, 2016

Contents

Foreword vii

Luc Hittinger

Introduction ix

Patrick Cégielski, Charalampos Cornaros, Costas
Dimitracopoulos

1 An Imperative Language Characterizing PTIME
Algorithms 1

Yoann Marquer and Pierre Valarcher

v

April 5, 2016

April 5, 2016

Foreword
Luc Hittinger1

I am very proud that the publishing collaboration between Stanford
University, more precisely CSLI Publications, and the University Paris
12 (Pôle de Recherche et d’Enseignement Supérieur Paris-Est), con-
tinues. After the first Lecture Notes (number 196 in 2010) devoted to
Studies in Weak Arithmetics and two more volumes (numbers 190 and
194 in 2011) of translation in French of select papers by Donald Knuth,
the famous computer scientist who has inspired much work in our lab-
oratory LACL (Laboratoire d’Algorithmique, Complexité et Logique), a
second Lecture Notes devoted to Studies in Weak Arithmetics is be-
ing published. This time the volume contains papers based on lectures
given during JAF31—the thirty first meeting of the Journées sur les
Arithmétiques Faibles conferences that began in Lyon in 1990.

Although one of the successors of the original University of Paris,
created in 1100, we like to consider our university as born in 1970
with the Faculty of Medicine and the Institute of Technology. At that
time the aim was towards professional students, which continues to be
our first objective. Fundamental science was essentially nonexistent in
the initial plan—no masters in Mathematics or Theoretical Computer
Science was offered, unlike what happened at many other universities in
France and around the world. However, we had to adapt to the needs of
our 32,000 students and our Laboratories of Mathematics (LAMA) and
Theoretical Computer Science (LACL) were created; LAMA and LACL
developed quickly and are now widely recognized by the international
community of researchers.

1President of the University Paris-Est Créteil Val-de-Marne

vii

Studies in Weak Arithmetics.
Patrick Cégielski, Ali Enayat,
Roman Kossak.
Copyright c© 2016, CSLI Publications.

April 5, 2016

April 5, 2016

Introduction
Patrick Cégielski,1 Charalampos Cornaros,2

Costas Dimitracopoulos3

The conference series, Journées sur les Arithmétiques Faibles (Weak
Arithmetics Days, JAF), began in June 1990 when the first meeting was
held at École Normale Supérieure in Lyon, France. That meeting has
been followed by thirty more meetings, during which researchers from
countries all over the world presented work and discussed research ideas
concerning Weak Arithmetics, that is, the research area concerning,
roughly speaking, the application of logical methods to Number Theory
and related topics.

The latest meeting of the series, JAF31, took place from May 30
until June 1, 2012, on Samos, the island of Pythagoras, one of the
most renowned mathematicians of all times. JAF31 was dedicated to
the memory of Alan R. Woods, a colleague who died on December
11, 2011, having made significant contributions to the area of Weak
Arithmetics and having participated is several meetings of the series.

The Steering Committee of the JAF series decided that a volume
be published, containing papers based on lectures delivered during the
meeting on Samos, as well as Alan’s Ph.D. thesis, parts of which re-
mained unpublished despite having motivated a tremendous amount of
work by many distinguished researchers. While preparing the volume,
which we undertook with enthusiasm, we invited more contributions by

1LACL, EA 4219, Université Paris-Est Créteil, France cegielski@u-pec.fr
2University of Aegean, Karlovassi, Greece kornaros@aegean.gr
3University of Athens, Greece cdimitr@phs.uoa.gr

ix

Studies in Weak Arithmetics.
Patrick Cégielski, Ali Enayat,
Roman Kossak.
Copyright c© 2016, CSLI Publications.

April 5, 2016

x / Cégielski, Cornaros, Dimitracopoulos

colleagues who had not been able to participate in JAF31 but wished
to honor the memory of Alan R. Woods. After a proposal of Roman
Kossak, we decided to also include in the volume another unpublished
Ph.D. thesis that had contributed significantly to progress in the area
of Weak Arithmetics, namely the thesis of Hamid Lesan, who died in
2006.

All papers published in the present volume were refereed by (at
least) two referees each. We are grateful to the following colleagues,
for having kindly helped us with the refereeing of the papers: Andrés
Cordon-Franco, David Fernandez Duque, Alex Esbelin, Benedetto Int-
rigila, Francisco Félix Lara Mart́ın, Vassilis Paschalis and Albert Visser.
We are also grateful to Vassilis Paschalis, for having undertaken the
typesetting of A. Woods’ thesis and for having offered us valuable tech-
nical support.

We would like to express our gratitude to Alan’s son, Robert, and
daughter, Sarah, for their kind permission to include his thesis in this
volume and for providing us with information concerning his life and
career; we are also grateful to Hamid’s wife, Lynda, and daughters, Sara
and Leila, for granting us their kind permission to include his thesis and
to George Wilmers, Hamid’s thesis supervisor, for having prepared a
note on Hamid’s life and work.

We are grateful to Ch. Cornaros, E. Tachtsis and their team in
Karlovassi, for organizing a memorable conference, and to all the spon-
sors of the meeting—University of Aegean, University of Athens, Re-
gional Government of North Aegean (Mr. A. Yiakalis, Governor, and
Mr. Th. Papatheofanous, Deputy Governor), Municipality of Samos
(Mr. S. Thanos, Mayor, and Mr. P. Parianos, Deputy Mayor), Munici-
pal Department of Karlovassi (Mr. S. Makris, Chairman), DOPONAS,
ALPHA BANK, Energiaki Samou SA (Mr. Nikos Elenis), Mr. Evan-
gelos Mytilinaios, Samaina Hotels, AB Shop & Go, DMGRAPHICS,
EKTYPON and TO SXEDIO—for having provided generous financial
and other support, without which the meeting would not have been so
successful. Finally, we would like to express our deep gratitude to the
Université Paris Est-Créteil, for having generously covered the cost of
production of the present volume, and to Marie-Annick Le Traon (Uni-
versité Paris Est Créteil–IUT de Sénart-Fontainebleau) for the design
of the cover.

Internet site:

http://lacl.fr/jaf/

contains further information on “Journées sur les Arithmétiques Faibles”.

April 5, 2016

1

An Imperative Language

Characterizing PTIME Algorithms
Yoann Marquer1 and Pierre Valarcher2

Abstract: Abstract State Machines of Y. Gurevich capture sequen-
tial algorithms, so we define the set of PTIME algorithms as the set of
ASM programs computed in polynomial time (using timer-step princi-
ple). Then, we construct an imperative programming language PLoopC
using bounded loop with break, and running with any data structure.
Finally, we prove that PLoopC computes exactly PTIME algorithms
in lock step (one step of the ASM is simulated by using a constant
number of steps).

Context

The paper is devoted to answer the question:

Is it possible to construct a programming language complete for the
set of polynomial time algorithms, and no more?

The common definition of PTIME is the set of functions computable by
a Turing Machine in polynomial time. This definition uses a step-timer
principle (the polynomial bounding the running time), which can be
criticized in two ways:

1. According to this definition, one-tape Turing Machines and two-
tape Turing Machines should be equivalent. But the palindrome

1Laboratoire d’Informatique Algorithmique: Fondements et Applications, Uni-
versit Paris Diderot - Paris 7 yoann.apeiron.marquer@gmail.com

2Laboratoire Algorithmique, Complexit et Logique, IUT Snart-Fontainebleau,
Universit Paris Est Crteil, pierre.valarcher@u-pec.fr

1

Studies in Weak Arithmetics.
Patrick Cégielski, Ali Enayat,
Roman Kossak.
Copyright c© 2016, CSLI Publications.

April 5, 2016

2 / Yoann Marquer and Pierre Valarcher

recognition can be done in O(n) steps with a two-tape Turing
machine while requiring (see [24]) at least O(n2/log(n)) steps
with a one-tape Turing machine. So, the concrete implementation
and its associated complexity (more specifically, the degree of the
time complexity) depend on the considered model. Therefore, we
need a more precise definition of polynomial time algorithms.

2. The second issue comes from the step-timer principle itself. It is
not convenient for programmers to use an external function at-
tached to the algorithm. The answer comes from implicit complex-
ity computation frameworks. Since a long time, there are many
attempts (like [2, 22] and [4]) to capture polynomial time algo-
rithms. The main motivations are usually to find “pleasant” syn-
tactical (and semantical) languages, to capture more algorithms
than the previous models, or to give simpler method to decide if
a program is computable in polynomial time.

We answer both criticisms by defining a convincing set of algorithms
running in polynomial time (using the step-timer principle), and by
constructing a programming language computing those algorithms:

Algorithms with Step-Timer Principle
From now half a century, there is a growing interest in defining
formally the notion of sequential algorithms [20, 10], and some
of these definitions allow to specify classes of algorithms3 (in [11,
10] and [8]).
An axiomatic definition of the sequential algorithms is mapped
to the notion of Abstract State Machine with a strict lock-step
simulation4. The model of ASM is a kind of super Turing Machine
that works not on simple tapes (with finite alphabets) but on
multi–sorted algebras (see the point of view in [13]). A program
is a finite set of rules that updates terms. It is shown in [17], that
the expressive power of ASM lies not in control structures but in
data structures, which are modeled within a first order structure.
According to Gurevich’s Thesis (see [12]), every algorithm can be
computed step-by-step by an ASM. So, we will define p.6 the set
ASMP as the set of every ASM with polynomial running time.

The PLoopC language
Many attempts tries to restrict Loop imperative language (see
[18]) in order to obtain relevant classes of algorithms.

3Even if there are parallel, distributed, real-time, bio-inspired or quantum algo-
rithms, this paper focuses only on sequential algorithms.

4See [9] for a definition of simulation and strict lock-step

An Imperative Language Characterizing PTIME Algorithms / 3

April 5, 2016

In [1, 23] a class APRA of primitive recursive algorithms is de-
fined for the basic data structure of (unary) integer coming from
the abstract state machine theory. From there, two imperative
programming languages and one functional programming lan-
guages are proved to be complete for this set of algorithms. In
other words, every algorithm defined in APRA can be written in
those languages without lost of time complexity (the simulation
is in O(1)).

For polynomial time, a Loop programming language is presented
in [22], where some properties are found to capture PTIME on
data structure such as stack, trees or graphs, and Neergaard intro-
duced in [21] his polynomial time PLoop programming language
PLoop, which uses stacks.

Following [1], we will define p.19 an imperative programming lan-
guage PLoopC, and prove that PLoopC captures exactly the set
ASMP of polynomial time algorithms. We do that by following the
Bellantoni and Cook’s approach (see [2]) separating safe and nor-
mal variables. By restricting the use of iteration bounds to be
inputs, we prove that PLoopC has polynomial time for every data
structure.

The paper is organized as follows.

In the first section we briefly introduce Gurevich’s framework of the
sequential algorithms, and define p.11 the notion of fair simulation. In
the second section we introduce the Gurevich’s ASM model of compu-
tation, and our programming language LoopC. Moreover, we will prove
p.20 that the sublanguage PLoopC has polynomial time.

The third section is devoted to prove p.35 that ASM fairly simulates
LoopC, by using the notion of graph of execution and a translation
of the ASM program into an imperative program. Therefore, because
PLoopC is a sublanguage of LoopC with polynomial time, ASMP fairly
simulates PLoopC. Reciprocally, in the fourth section, we will prove p.25
that PLoopC fairly simulates ASMP , by using an imperative program
translating one step of the ASM, and repeat it a sufficient number of
times by using a translation of the complexity and a formula detecting
the end of the execution.

Therefore, we will prove that PLoopC characterizes polynomial time
algorithms.

Keywords. ASM, computability, imperative language, implicit com-
plexity, polynomial time, sequential algorithms, simulation.

April 5, 2016

4 / Yoann Marquer and Pierre Valarcher

1 Sequential Algorithms

In [10] Gurevich introduced an axiomatic presentation of the sequential
algorithms, by giving the three postulates of Sequential Time, Abstract
States and Bounded Exploration. In our paper the set of “objects”
satisfying these postulates is denoted by Algo.

We will introduce them briefly in the first subsection, as well as other
notions from Gurevich’s framework such as execution, time, structure
and update. In the second subsection we will introduce our definition
of a fair simulation between computation models.

1.1 Three Postulates

Postulate 1 (Sequential Time). A sequential algorithm A is given by:

1. A set of states S(A)

2. A set of initial states I(A) ⊆ S(A)

3. A transition function τA : S(A)→ S(A)

Remarque 1. According to this postulate, two sequential algorithms
A and B are the same (see [3]) if they have the same set of states
S(A) = S(B), the same set of initial states I(A) = I(B), and the same
transition function τA = τB.

An execution of A is a sequence of states ~X = X0, X1, X2, . . . such
that:

1. X0 is an initial state

2. For every t ∈ N, Xt+1 = τA(Xt)

A state Xt of an execution is final if τA(Xt) = Xt. An execution is
terminal if it contains a final state. The duration of an execution is
defined by the number of steps5 done before reaching a final state:

time(A,X0) =def min{t ∈ N | τ tA(X0) = τ t+1
A (X0)}

Notice that if the execution ~X is not terminal then time(A,X0) =∞.

Remarque 2. Two algorithms A and B have the same set of exe-
cutions if they have the same set of initial states I(A) = I(B) and
the same transition function τA = τB. In that case, they can only be
different on the states which cannot be reached by an execution.

To state the second postulate, we need to introduce the notion of
structure. Gurevich formalized the states of a sequential algorithm with
first-order structures. A (first-order) structure X is given by:

5In the definition of time, f i is the iteration of f defined by f0 = id and f i+1 =
f(f i).

An Imperative Language Characterizing PTIME Algorithms / 5

April 5, 2016

1. An infinite6 set U(X) called the universe (or domain) of X

2. A finite set of function symbols L(X) called the signature (or
language) of X

3. For every symbol s ∈ L(X) an interpretation sX such that:

(a) If c has arity 0 then cX is an element of U(X)

(b) If f has an arity α > 0 then f
X

is an application: U(X)α →
U(X)

In order to have a uniform presentation, Gurevich considered con-
stant symbols of the signature as 0-ary function symbols, and relation
symbols R as their indicator function χR. Therefore, every symbol in
L(X) is a function. Moreover, partial functions can be implemented
with a special value undef .

This formalization can be seen as a representation of a computer
data storage. For example, the interpretation sX of the symbol s in the
structure X represents the value in the register s for the state X.

The second postulate can be seen as a claim assuming that every data
structure can be formalized as a first-order structure7. Moreover, since
the representation of states should be independent from their concrete
implementation (for example the name of objects), isomorphic states
will be considered as equivalent:

Postulate 2 (Abstract States). For every algorithm A,

1. The states of A are (first-order) structures with the same signa-
ture L(A)

2. S(A) and I(A) are closed by isomorphism

3. The transition function τA preserves the universes and commutes
with the isomorphisms

The symbols of L(A) are distinguished between:

1. Dyn(A) the set of dynamic symbols, whose interpretation can
change during an execution (as an example, a variable x)

2. Stat(A) the set of static symbols, which have a fixed interpre-
tation during an execution. They are also distinguished between:

(a) Init(A), the set of parameters, whose interpretation de-
pends only on the initial state (as an example, two given
integers m and n).

6Usually the universe is only required to be non-empty, we need the universe to
be at least countable in order to define unary integers .

7We tried to characterize common data types (such as integers, words, lists,
arrays, and graphs) in [16]. But we will not go into details, because this is not the
point of this article.

April 5, 2016

6 / Yoann Marquer and Pierre Valarcher

The symbols depending on the initial state are the dynamic sym-
bols and the parameters, so we call them the inputs.

The other symbols have a uniform interpretation in every state
(up to isomorphism), and they are also distinguished between:

(b) Cons(A) the set of constructors (true and false for the
booleans, 0 and S for the unary integers, . . .)

(c) Oper(A) the set of operations (¬ and ∧ for the booleans,
+ and × for the unary integers, . . .)

The size of an element of the universe is the length of its representa-
tion (see [16] for more details), in other words the number of construc-

tors necessary to write it. As an example, |¬¬true
X | = |true

X | = 1,

|1 + 2
X | = |S(S(S(0)))

X
| = 4 in the unary numeral system8, and

|1 + 2
X | = |11

X | = 2 in the binary numeral system.

The size of a state is the maximum (or the sum, which is equivalent
because the signature is finite) of the size of its inputs:

|X| =def max
f∈Dyn(A)tInit(A)

{|f |X}, where |f |X =def sup
ai∈U(A)

|fX(~a)|

Definition 1 (Time Complexity).

The algorithm A is C-time if there exists ϕA ∈ C such that for all
X ∈ I(A):

time(A,X) ≤ ϕA(|X|)
Let AlgoC be the set of C-time algorithms. In particular, we denote

by AlgoP the set of polynomial-time algorithms.

The logical variables are not used in this paper: every term and
every formula is closed, and every formula is without quantifier. In this
framework the variables are the 0-ary dynamic function symbols.

For a sequential algorithm A, let X be a state of A, f ∈ L(A) be a dy-
namic α-ary function symbol, and a1, . . . , aα, b ∈ U(X). (f, a1, . . . , aα)
denotes a location of X and (f, a1, . . . , aα, b) denotes an update on X
at the location (f, a1, . . . , aα).

If u is an update then9 X ⊕ u is a new structure of signature L(A)
and universe U(X) such that the interpretation of a function symbol

8More generally, in the unary numeral system |nX | = n+ 1.
9The update is denoted ⊕, not + like in [12] or [17], because the associativity

has no meaning here, and because we don’t have the commutativity:

(X ⊕ (x, 0))⊕ (x, 1) 6= (X ⊕ (x, 1))⊕ (x, 0)

An Imperative Language Characterizing PTIME Algorithms / 7

April 5, 2016

f ∈ L(A) is:

f
X⊕u

(~a) =def

{
b if u = (f,~a, b)

f
X

(~a) else

If f
X

(~a) = b then the update (f,~a, b) is trivial in X, because nothing
has changed. Indeed, if (f,~a, b) is trivial in X then X ⊕ (f,~a, b) = X.

If ∆ is a set of updates then ∆ is consistent on X if it does not
contain two distinct updates with the same location. If ∆ is inconsis-
tent, there exists (f,~a, b), (f,~a, b′) ∈ ∆ with b 6= b′, so the entire set of
updates clashes:

f
X⊕∆

(~a) =def

{
b if (f,~a, b) ∈ ∆ and ∆ is consistent on X

f
X

(~a) else

If X and Y are two states of the same algorithm A then there exists

a unique consistent set ∆ = {(f,~a, b) | fY (~a) = b and f
X

(~a) 6= b} of
non trivial updates such that Y = X ⊕ ∆. This ∆ is the difference
between the two sets and is denoted by Y 	X.

Let ∆(A,X) = τA(X)	X be the set of updates done by a sequential
algorithm A on the state X.

During an execution, if an increasing number of updates are done
(as is the case in example 1 with the parallel lambda-calculus) then
the algorithm will be said massively parallel, not sequential. The two
first postulates cannot ensure that only local and bounded explo-
rations/changes are done at every step. The third postulate states that
only a bounded number of terms must be read or updated during a
step of the execution:

Postulate 3 (Bounded Exploration).

For every algorithm A there exists a finite set T of terms (closed by
subterms) such that for every state X and Y , if the elements of T have
the same interpretations on X and Y then ∆(A,X) = ∆(A, Y).

This T is called the exploration witness of A.

Gurevich proved in [12] that if (f, a1, . . . , aα, b) ∈ ∆(A,X) then
a1, . . . , aα, b are interpretations in X of terms in T . So, since T is fi-
nite there exists a bounded number of a1, . . . , aα, b such that the up-
date (f, a1, . . . , aα, b) belongs to ∆(A,X). Moreover, since L(A) is fi-
nite there exists a bounded number of dynamic symbols f . Therefore,
∆(A,X) has a bounded number of elements, and for every step of the
algorithm only a bounded amount of work is done.

April 5, 2016

8 / Yoann Marquer and Pierre Valarcher

1.2 Fair Simulation

A model of computation can be defined as a set of programs given
with their operational semantics. In our paper we only study sequential
algorithms, which have a step-by-step execution determined by their
transition function. So, this operational semantics can be defined by a
set of transition rules, as is the case in the following example:

Example 1 (The Lambda-Calculus).
The lambda calculus is defined by of a set of lambda terms (which

are the “programs”), and a set of transformation rules (which are the
“operational semantics”):

Syntax of Programs: t =def x | λx.t | (t1)t2
β-reduction: (λx.t1)t2 →β t1[t2/x]

In order to be deterministic the strategy of the transition system
must be specified. An example is the call-by-name strategy defined by
context:

Call-by-Name Context: Cn{.} =def . | Cn{.}t
Transition Rule: Cn{(λx.t1)t2} →n Cn{t1[t2/x]}

This rule can be implemented in a machine:

Operational semantics: t1t2 ? π �0 t1 ? t2, π
λx.t1 ? t2, π �1 t1[t2/x] ? π

These notations and this machine are directly taken from Krivine’s
[15]. In this machine π is a stack of terms. The symbol ? is a separator
between the current program and the current state of the memory.
� represents one step of computation, where only substitutions have
a cost, not explorations inside a term, as is the case in the contextual
transition rule. Programs in the machine are closed terms, so final states
have the form λx.t ?∅.

We will follow the notations ? and � in the definition of the opera-
tional semantics of imperative programs 7.

Notice that if the substitution is given as an elementary operation
this model satisfies the third postulate, because only one term is pushed
or popped per step. This is not the case with the lambda-calculus with
parallel reductions. For example, with the term t = λx.(x)x(x)x applied
to itself:

(t)t→p (t)t(t)t→p (t)t(t)t(t)t(t)t→p . . .

Indeed, at the step t exactly 2t−1 β-reductions are done, which is un-
bounded.

Sometimes, not only the simulation between two models of com-
putation can be proven, but also their identity. As an example, Serge

An Imperative Language Characterizing PTIME Algorithms / 9

April 5, 2016

Grigorieff and Pierre Valarcher proved in [13] that Evolving MultiAlge-
bras (a variant of the Gurevich’s ASMs) can unify common sequential
models of computation. For instance, a family of EMAs can not only
simulate step-by-step the Turing Machines, it can also be literally iden-
tified to them. The same applies for Random Access Machines, or other
common models.

But generally it is only possible to prove a simulation between two
models of computation. In our framework, a computation model M1

can simulate another computation model M2 if for every program P2

of M2 there exists a program P1 of M1 producing in a “reasonable
way” the “same” executions as those produced by P2. The following
two examples will detail what can be used in a “fair” simulation:

Example 2 (Temporary Variables).
In this example a programmer is trying to simulate a loop n {P}

command in an imperative programming language10 containing while

commands. The well-known solution is to use a temporary variable i
in the new program:

i := 0; while i < n {P ; i := i+ 1; };

This simulation is very natural, but a fresh variable i is necessary.
Another example is to simulate the exchange x ↔ y between two

variables using a temporary variable:

v := x;x := y; y := v;

In any case, the signature L1 of the simulating program must be
bigger than the signature L2 of the simulated program.

Notation 3. We follow the notation from [7], where X|L2 denotes the
restriction of the L1-structure X to the signature L2. The signature
of X|L2

is L2, its universe is the same than X, and every symbol s ∈ L2

has the same interpretation in X|L2
than in X.

This notation is extended to a set of updates:

∆|L =def {(f,~a, b) ∈ ∆ | f ∈ L}

But fresh function symbols could be “too powerful”, for example a
dynamical unary symbol env alone would be able to store an unbounded
amount of information. In order to obtain a fair simulation, we assume
that the difference L1 \ L2 between both signatures is a set containing
only a bounded number of variables (0-ary dynamical symbols).

The initial values of these fresh variables could be a problem if
they depend on the inputs. For example, the empty program could

10We will define 6 the precise syntax of imperative programs.

April 5, 2016

10 / Yoann Marquer and Pierre Valarcher

compute any f(~n) if we assume that an output variable contains in the
initial state the result of the function f on the inputs ~n.

So, in this paper we use an initialization which depends11 only on
the constructors12. Because this initialization is independent (up to iso-
morphism) from the initial states, we call it a uniform initialization.

Example 4 (Temporal Dilation).
At every step of a Turing machine, depending on the current state

and the symbol in the current cell:

. the state of the machine is updated

. the machine writes a new symbol in the cell

. the head of the machine can move left or right

Usually these actions are considered simultaneous, so only one step
of computation is necessary to execute them. This is our classical model
M1 of Turing machines. But if we consider that every action requires
one step of computation then we could imagine a model M3 where three
steps are necessary to simulate one step of M1.

In other words, if we only observe an execution

X0, X1, X2,X3, X4, X5,X6, . . .

of M3 every three steps (the observed states are bolded) then we will
obtain an execution defined by Yt = X3×t, which is an execution of
M1.

Imagine that M1 and M2 are implemented on real machines such
that M3 is three times faster than M1. In that case if an external
observer starts both machines simultaneously and checks their states
at every step of M1 then both machines cannot be distinguished.

In the following a (constant) temporal dilation d is allowed. We
will say that the simulation is step-by-step, and strictly step-by-step if
d = 1. Unfortunately, contrary to the previous example this constant
may depend on the simulated program.

But this temporal dilation is not sufficient to ensure the termination
of the simulation. For example, a simulated execution Y0, . . . , Yt, Yt, . . .
could have finished, but the simulating execution

X0, . . . , Xd×t, Xd×t+1, . . . , Xd×t+(d−1), Xd×t, Xd×t+1, . . .

may continue forever. So, an ending condition like time(A,X) = d ×
11Even the values of fresh variables in the initial states can be irrelevant. See the

program PΠ 8 where the variables ~v are explicitly updated with the value of terms
~t before being read.

12See the program ΠP 15 where the boolean variable bP is initialized with true
and the others with false.

An Imperative Language Characterizing PTIME Algorithms / 11

April 5, 2016

time(B,X)+e is necessary, and corresponds to the usual consideration
for asymptotic time complexity.

Definition 2 (Fair Simulation).

Let M1,M2 be two models of computation.

M1 simulates M2 if for every program P2 of M2 there exists a pro-
gram P1 of M1 such that:

1. L(P1) ⊇ L(P2), and L(P1)\L(P2) is a finite set of variables (with
a uniform initialization)

and there exists d ∈ N \ {0} and e ∈ N (depending only on P2) such

that, for every execution ~Y of P2 there exists an execution ~X of P1

satisfying:

2. for every t ∈ N, Xd×t|L(P2) = Yt

3. time(P1, X0) = d× time(P2, Y0) + e

If M1 simulates M2 and M2 simulates M1 then these models of
computation are algorithmically equivalent, which is denoted by
M1 'M2.

Remarque 3. The second condition Xd×t|L(P2) = Yt implies for t = 0
that the initial states are the same, up to temporary variables.

2 Models of Computation

In this section, Gurevich’s Abstract State Machines are defined, and we
use his theorem Algo = ASM to get a constructive (from an operational
point of view) occurrence of sequential algorithms. So, in the rest of
the paper, the set of polynomial-time algorithms AlgoP will be the set
ASMP of ASMs with a polynomial time complexity.

We will define in the second part of the section the language LoopC

from [1], and prove that a sublanguage PLoopC has polynomial time.
We will prove in the next section that this sublanguage is complete
for P-time algorithms. In order to do so, we will prove a bisimulation
between ASMP and PLoopC, using the same data structures in these two
models of computation.

2.1 Abstract State Machines

Without going into details, the Gurevich’s Abstract State Machines
(ASM) require only the equality =, the constants true and false, the
unary operation ¬ and the binary operations ∧.

April 5, 2016

12 / Yoann Marquer and Pierre Valarcher

Definition 3 (ASM programs).

Π =def f(t1, . . . , tα) := t0
| if F then Π1 else Π2 endif

| par Π1‖ . . . ‖Πn endpar

where f is a dynamic α-ary function symbol, t0, t1, . . . , tα are closed
terms, and F is a formula.

Notation 5. For n = 0 a par command is an empty program, so let
skip be the command par endpar. If the else part of an if is a skip

we only write if F then Π endif.

The sets Read(Π) of terms read by Π and Write(Π) of terms written
by Π can be used to define the exploration witness of Π. But we will also
use them in the rest of the article, especially to define the µ-formula
FΠ p.34.

Read(Π) is defined by induction on Π:

Read(f(t1, . . . , tα) := t0)
=def {t1, . . . , tα, t0}

Read(if F then Π1 else Π2 endif)
=def {F} ∪ Read(Π1) ∪ Read(Π2)

Read(par Π1‖ . . . ‖Πn endpar)
=def Read(Π1) ∪ · · · ∪ Read(Πn)

Write(Π) is defined by induction on Π:

Write(f(t1, . . . , tα) := t0)
=def {f(t1, . . . , tα)}

Write(if F then Π1 else Π2 endif)
=def Write(Π1) ∪Write(Π2)

Write(par Π1‖ . . . ‖Πn endpar)
=def Write(Π1) ∪ · · · ∪Write(Πn)

Remarque 4. The exploration witness of Π is the closure by subterms
of Read(Π)∪Write(Π) and not only Read(Π) because the updates of a
command could be trivial.

As said p.8, defining the syntax of programs is not enough to obtain
a model of computation, we still have to define their semantics. An ASM

program Π determines a transition function τΠ(X) =def X ⊕∆(Π, X),
where the set of updates ∆(Π, X) done by Π on X is defined by induc-
tion:

Definition 4 (Operational Semantics of ASMs).

∆(f(t1, . . . , tα) := t0, X) =def {(f, t1
X
, . . . , tα

X
, t0

X
)}

∆(if F then Π1 else Π2 endif, X) =def ∆(Πi, X)

An Imperative Language Characterizing PTIME Algorithms / 13

April 5, 2016

where i =

{
1 if F is true on X
2 else

∆(par Π1‖ . . . ‖Πn endpar, X) =def ∆(Π1, X) ∪ · · · ∪∆(Πn, X)

Notice that the semantics of the par is a set of updates done si-
multaneously, contrary to the imperative language defined in the next
subsection, which is strictly sequential.

Remarque 5. For every states X and Y , if the terms of Read(Π) have
the same interpretation on X and Y then ∆(Π, X) = ∆(Π, Y).

We can now define the set ASM of Abstract States Machines:

Definition 5. An Abstract State Machine M with signature L is given
by:

. an ASM program Π on L. a set S(M) of L-structures closed by isomorphisms and τΠ. a subset I(M) ⊆ S(M) closed by isomorphisms. an application τM , which is the restriction of τΠ to S(M)

For every sequential algorithm A, the finiteness of the exploration
witness in the third postulate allows us (see [12]) to write a finite ASM

program ΠA, which has the same set of updates than A for every state.
Every program ΠA obtained in this way has the same form, which we
call the normal form:

par if F1 then Π1

‖ if F2 then Π2

...
‖ if Fc then Πc

endpar

where Fi are “guards”, which means that for every state X one and
only one Fi is true, and the programs Πi have the form

par u1‖ . . . ‖umi endpar
where u1, . . . , umi are update commands.

Remarque 6. ∆(ΠA, X) = ∆(A,X) = τA(X) 	 X, so ∆(ΠA, X) is
consistent without trivial updates.

The proof that the set of sequential algorithms is identical to the set
of ASMs uses mainly the fact that every ASM has a finite exploration
witness. Reciprocally, for every sequential algorithm we can define an
ASM with the same transition function:

Theorem 6 (Gurevich, 2000).

Algo = ASM

April 5, 2016

14 / Yoann Marquer and Pierre Valarcher

So, Gurevich proved that his axiomatic presentation for sequential
algorithms defines the same objects than his operational presentation
of ASMs.

Remarque 7. According to this theorem, every ASM is a sequential
algorithm and every sequential algorithm can be simulated by an ASM
in normal form. So, for every ASM there exists an equivalent ASM in
normal form.

2.2 Imperative programming

We know that an imperative language such as Albert Meyer and Dennis
Ritchie’s Loop defined in [18] can compute any primitive recursive func-
tion, but cannot compute some “better” algorithms (see [6] for the min
and [19] for the gcd). This Loop language has been extended in [with
an exit command to obtain every Arithmetical Primitive Recursive
Algorithm13.

In [16] we generalized this result, by proving that LoopC character-
ized algorithms with primitive recursive time and data structures. We
use this language because it is minimal. The programs are only se-
quences of updates, if or loop commands. Notice that the loop com-
mands can be broken if an exception is reached, like in [1]. Moreover,
in the following section we will prove that a sublanguage PLoopC has
polynomial time.

The difference with common models of computation is that the data
structures are not fixed. As is the case for the ASMs, the equality and
the booleans are needed, and the unary integers are necessary for the
loop commands, but the other data structures are seen as oracular.
If they can be implemented in a sequential algorithm then they are
implemented using the same language, universe and interpretation in
this programming language. So, the fair simulation between ASMP and
PLoopC is proven for control structures, up to data structures.

Definition 6 (Syntax of LoopC programs).

c =def f(t1, . . . , tα) := t0
| if F {P1} else {P2}
| loop n except F {P}

P =def end

| c;P
where f is a dynamic α-ary function symbol, t0, t1, . . . , tα are closed
terms, F is a formula, and n is a variable which is not updated in the

13APRA is defined as the set of the sequential algorithms with a primitive re-
cursive time complexity, using only booleans and unary integers as data structures,
and using only variables as dynamical symbols.

An Imperative Language Characterizing PTIME Algorithms / 15

April 5, 2016

body of the loop.

Notation 7. As is the case for ASM programs, we write only if F {P}
for the command if F {P} else {end}. Following Meyer and Ritchie’s
style [18], we write simply loop n {P} a command

loop n except false {P}
For the sake of clarity, we will omit the end inside curly brackets in the
rest of the paper.

The composition of commands c;P can be generalized by induc-
tion to composition of programs P1;P2 by end;P2 =def P2 and
(c;P1);P2 =def c; (P1;P2). As seen in example 1 p.8 the operational
semantics of this LoopC programming language is formalized by a state
transition system. A state of the system is a pair P ? X of a LoopC

program and a structure. Its transitions are determined only by the
head command and the current structure:

Definition 7 (Operational Semantics of LoopC).

f(t1, . . . , tα) := t0;P ? X � P ? X ⊕ (f, t1
X
, . . . , tα

X
, t0

X
)

if F {P1} else {P2};P3 ? X � Pj ;P3 ? X

where j =

{
1 if F is true in X
2 else

loop n except F {P1};P2 ? X � Q;P2 ? X ⊕ (i, a)

where Q =

{
P1; loop n except F {P1} if i < n and F

X
= false

end else

and a =

{
i
X

+ 1 if i < n and F is false in X
0 else

i is a dynamical symbol initialized to 0 in the initial states and which
does not appear in the program. Each loop has a different counter i.

The successors are unique, so this transition system is deterministic.
We denote by �t a succession of t transition steps.

Only the states end?X have no successor, so they are the terminating
states.

Notation 8. P terminates on X if there exists t and X ′ such that:

P ? X �t end ? X ′

Because the transition system is deterministic, t and X ′ are unique. So
X ′ is denoted P (X) and t is denoted time(P,X). A program is terminal
if it terminates for every initial state.

April 5, 2016

16 / Yoann Marquer and Pierre Valarcher

Example 9. This program computes the minimum of two integers m
and n in O(min(m,n)) steps, and stores the result in the output vari-
able r:

Pmin =def r := 0; loop n except r = m {r := r + 1; }; end
The execution of this program for m = 2 and n = 3 on a structure

X is:

r := 0; loop 3 except r = 2 {r := r + 1; }; ? X ⊕ (i, 0)
� loop 3 except r = 2 {r := r + 1; }; ? X ⊕ {(i, 0), (r, 0)}
�r := r + 1; loop 3 except r = 2 {r := r + 1; }; ? X ⊕ {(i, 1), (r, 0)}
� loop 3 except r = 2 {r := r + 1; }; ? X ⊕ {(i, 1), (r, 1)}
�r := r + 1; loop 3 except r = 2 {r := r + 1; }; ? X ⊕ {(i, 2), (r, 1)}
� loop 3 except r = 2 {r := r + 1; }; ? X ⊕ {(i, 2), (r, 2)}
� end ? X ⊕ {(i, 0), (r, 2)}

So time(Pmin , X) = 2 + 2×min(mX , nX) = O(min(mX , nX))

The composition of programs behaves as intended. It is proved in
[16] by using only the determinism and the transitivity of the transition
system.

Proposition 1 (Composition of Programs).
P1;P2 terminates on X if and only if P1 terminates on X and P2

terminates on P1(X), such that:

1. P1;P2(X) = P2(P1(X))

2. time(P1;P2, X) = time(P1, X) + time(P2, P1(X))

As a consequence, we can prove by induction that every LoopC pro-
gram is terminal.

Because the transition system is deterministic, there exists a unique
P ′ and X ′ such that P ?X �t P ′?X ′. Let τ tX(P) be that P ′ and τ tP (X)
be that X ′:

P ? X �t τ tX(P) ? τ tP (X)

Remarque 8. τ tP is not a transition function in the sense of the first
postulate 1, because τ tP (X) 6= τP ◦ · · · ◦ τP (X).

Definition 8. The set of updates made by P on X is:

∆(P,X) =def

⋃
0≤t<time(P,X)

τ t+1
P (X)	 τ tP (X)

Remarque 9. In our transition system, one update at most can be
done per step, so τ t+1

P (X)	τ tP (X) is empty or is a singleton. Therefore,
the cardinal of ∆(P,X) is bounded by time(P,X).

In imperative programming languages, an overwrite occurs when
a variable is updated to a value, then is updated to another value later

An Imperative Language Characterizing PTIME Algorithms / 17

April 5, 2016

in the execution. In our framework, this means that there exists in
∆(P,X) two updates (f,~a, b) and (f,~a, b′) with b 6= b′, which makes
∆(P,X) inconsistent. So, we say that P is without overwrite on X if
∆(P,X) is consistent.

Lemma 1 (Updates of a Non-Overwriting Program).

If P is without overwrite on X then ∆(P,X) = P (X)	X.

Proof. The proof is admitted in this paper, but is detailed in [16]. a

2.3 Polynomial Time

We proved in [16] that LoopC is algorithmically complete for PR-time
algorithms (restricted to PR-space data structures). The purpose of
this subsection is to syntactically restrict this language in order to
obtain a P-time language PLoopC.

FIGURE 1 A Program for the Exponential Function

r := 0
r := r + 1
loop n

x := r
loop x

r := r + 1

The program Ppow in figure 1 is a Loop program (see [18]) because
it uses only variables, zero, successor, and loops. The command x :=

r; loop x {r := r + 1; } computes r := 2r, so rPpow (X) = 2n
X

. Variables
of a Loop program can only be increased by substitution or successor.
So, according to the definition 1.1:

|Ppow (X)| ≤ |X|+ time(Ppow , X)

Therefore, Ppow is (at least) exponential in time.

In order to obtain a P-time language, Neergaard used in [21] the
Bellantoni and Cook’s approach (see [2]) separating safe and normal
variables. Safe variables can be updated, and normal variables are the
bounds n in the loop n commands:

April 5, 2016

18 / Yoann Marquer and Pierre Valarcher

Definition 9 (Bounds of Loops).

Bound(end) =def {}
Bound(c;P) =def Bound(c) ∪ Bound(P)

Bound(f(t1, . . . , tα) := t0) =def {}
Bound(if F {P1} else {P2}) =def Bound(P1) ∪ Bound(P2)

Bound(loop n except F {P}) =def {n} ∪ Bound(P)

The programming language PLoop of Neergaard contains only pro-
grams such that for every loop n {P} command occurring in the pro-
gram, {n} ∪ Bound(P) ⊆ Stat(P). In other words, normal variables
and safe variables are distinct sets in loops.

As suggested by the name, Neergaard proved that programs in PLoop

are in polynomial time (and space14). In order to do so, he used lists
as data structures, such that |(d, e)| = max (|d|, |e|) + 1. This result can
be generalized to “translation functions” (in a geometric sense), those
satisfying that:

|f(~x)| ≤ max|~x|+ cf

Theorem 10 (A P-time Language).
If the operations are translations, then PLoop is P-time and P-space.

But the set of translation functions is very restrictive. As an example,
the program in figure 2 satisfies Neergaard’s condition, but is not P-
time because x 7→ 2x is not a translation.

FIGURE 2 A PLoop Program Using more than Translation Functions

r := 1
loop n

r := 2r
loop r

As an example, for unary integers the successor is a translation but
not the addition, and for binary integers the addition is a translation
but not the multiplication. In order to obtain more algorithms, we need
to have larger data structures, so we will have to restrict even more our
programming language.

The program in figure 2 illustrates that an exponential space in
r can be converted into an exponential time using loop r and the

14A program P is C-space if there exists ϕP ∈ C such that, for every initial state
X, |P (X)| ≤ ϕP (|X|).

An Imperative Language Characterizing PTIME Algorithms / 19

April 5, 2016

composition. This is the reason why the space must be P-time too in
Neergaard’s theorem 10.

In order to obtain a P-time programming language using every possi-
ble data structure, we will simply remove the connection between space
and time. So, the bounds will remain static in the whole program, and
not only in loops.

Definition 10 (P-time Programming Language).
Let PLoopC be the set of LoopC programs P satisfying that:

Bound(P) ⊆ Stat(P)

Remarque 10. This language is not closed by composition. As an
example, the programs n := pow(n); end and loop n {}; end are in
PLoopC, not n := pow(n); loop n {}; end.

But this language will be useful anyway. We prove at proposition 2
that programs in PLoopC are P-time, where the degree of the complexity
is the depth of the program:

Definition 11 (Depth of a Program).

depth(end) =def 0
depth(c;P) =def max (depth(c), depth(P))

depth(f(t1, . . . , tα) := t0) =def 0
depth(if F {P1} else {P2}) =def max (depth(P1), depth(P2))

depth(loop n except F {P1}) =def δ + depth(P1)

where δ =

{
1 if n ∈ Dyn(P) t Init(P)
0 if n ∈ Cons(P) tOper(P)

Both cases in the previous definition may be surprising, because the
depth is distinguished from the nesting. Indeed, if the bound of a loop
is an uniform symbol, we assume that the loop is not a “true” loop, but
only a syntactical convention to avoid code duplication, as illustrated
at figure 3.

FIGURE 3 Different nesting, same depth.

r := 0 r := 0
loop 3 r := r + 1

r := r + 1 r := r + 1
r := r + 1

Remind that for every program P in PLoopC, Bound(P) ⊆ Stat(P).
So, we use only the symbols in Init(P) for the depth. Moreover, if P1

April 5, 2016

20 / Yoann Marquer and Pierre Valarcher

is a subprogram of P then Init(P1) ⊆ Init(P). So, in the following
proposition and its proof, for the sake of simplicity we use the notation
|X|Init for the size in X of the initial symbols of the program and its
subprograms:

|X|Init =def max
f∈Init(P)

{|f |X}

Proposition 2 (Polynomial Time).
For every program P in PLoopC there exists ϕP ∈ P such that for

every X:

1. time(P,X) ≤ ϕP (|X|Init)

2. deg(ϕP) = depth(P)

Remarque 11. Initial symbols are static, so their interpretations in
P (X) are the same as in X. As a consequence, for every program P ,
|P (X)|Init = |X|Init .

Proof. The proof is made by induction on P , by using:

. ϕend = 0

. ϕP1;P2
= ϕP1

+ ϕP2
(according to proposition 1 p.16)

It remains to prove the proposition for commands alone, using the
induction hypothesis. Both cases for updates and conditionals are
straightforward:

. ϕf(t1,...,tα):=t0 = 1

. ϕif F then {P1} else {P2} = 1 + ϕP1
+ ϕP2

So, we focus only on the non-trivial case of loops.
Because a for command (where the counter i is read) can be simu-

lated by using a fresh variable, we can assume for the sake of simplicity
that counters are not read in the program. So, we can write the execu-
tion of the program P = loop n except F {P1} in this way:

loop n except F {P1}; end ? X ⊕ (i, 0)
� P1; loop n except F {P1}; end ? X ⊕ (i, 1)
�time(P1,X) loop n except F {P1}; end ? P1(X)⊕ (i, 1)
� P1; loop n except F {P1}; end ? P1(X)⊕ (i, 2)
...
�time(P1,P

a−1
1 (X)) loop n except F {P1}; end ? P a1 (X)⊕ (i, a)

� end ? P a1 (X)⊕ (i, 0)

where a is the first 0 ≤ t ≤ nX such that F is true in P t1(X), or
a = nX if F is false in P t1(X) for every 0 ≤ t ≤ nX .

An Imperative Language Characterizing PTIME Algorithms / 21

April 5, 2016

1. Time of the execution:

time(P,X) =
∑

0≤t≤a−1

(1 + time(P1, P
t
1(X))) + 1

≤ 1 + nX +
∑

0≤t≤nX−1

time(P1, P
t
1(X))

By induction hypothesis, for every X:

time(P1, X) ≤ ϕP1
(|X|Init)

So, time(P1, P
t
1(X)) ≤ ϕP1

(|P t1(X)|Init) = ϕP1
(|X|Init). There-

fore:

time(P,X) ≤ 1 + nX +
∑

0≤t≤nX−1

ϕP1
(|X|Init)

= 1 + nX × (1 + ϕP1(|X|Init)) (1)
≤ 1 + (nX + 1)× (1 + ϕP1(|X|Init)) (2)

We use both inequalities for the following cases:

. If n ∈ Cons(P)tOper(P), then there exists an integer cn such
that nX = cn.

So, ϕP = 1 + cn × (1 + ϕP1) (1).. If n ∈ Init(P), then nX + 1 = |nX | ≤ |X|Init .
So, ϕP (x) = 1 + x× (1 + ϕP1

(x)) (2).

2. The degree of the complexity depends on the case:

. If n ∈ Cons(P) tOper(P), then:

deg(ϕP) = deg(1 + cn × (1 + ϕP1
))

= deg(ϕP1
)

= depth(P1)
= depth(P)

. If n ∈ Init(P), then:

deg(ϕP) = deg(1 + id × (1 + ϕP1
))

= 1 + deg(ϕP1)
= 1 + depth(P1)
= depth(P)

a

The coefficients of ϕP are positive, so if 0 ≤ m ≤ n then ϕP (m) ≤
ϕP (n). More specifically, since |X|Init ≤ |X|, we have ϕP (|X|Init) ≤
ϕP (|X|). As a consequence, we have time(P,X) ≤ ϕP (|X|). Therefore,
the time complexity of P is at most a polynomial of degree depth(P).

April 5, 2016

22 / Yoann Marquer and Pierre Valarcher

3 ASM Simulates LoopC

3.1 Graphs of Execution

The intuitive idea for translating LoopC programs into ASM programs
is to translate separately every command, and to add a variable (for
example, the number of the line in the program) to keep track of the
current command15.

Example 11. The imperative program Pmin of the example 9 p.16:

0 : r := 0
1 : loop n except r = m
2 : r := r + 1

could be translated into the following ASM program:

FIGURE 4 Translation of Pmin

par if line = 0 then

par r := 0 ‖ line := 1 endpar

endif

‖ if line = 1 then

if (i 6= n ∧ r 6= m) then
par i := i+ 1 ‖ line := 2 endpar

else

par i := 0 ‖ line := 3 endpar

endif

endif

‖ if line = 2 then

par r := r + 1 ‖ line := 1 endpar

endif

endpar

Remarque 12. The number of a line is between 0 and length(P). So,
a finite number of booleans b0, b1, . . . , blength(P) can be used16 instead of
an integer line.

This approach has been suggested in [14], and is fitted for a line-
based programming language (for example with goto instructions) but
not the structured language LoopC. Indeed, the positions in the pro-
gram can distinguish two commands even if they are identical for the
operational semantics of LoopC:

15Programs of this form are called control state ASMs (see [5]).
16Remember that booleans must be in the data structure, but integers may not.

An Imperative Language Characterizing PTIME Algorithms / 23

April 5, 2016

Example 12. (Labelled LoopC)
To make an easy example, let’s compare the two updates x := x+ 1

in the program of figure 5.

loop m {x := x+ 1; loop n {x := x+ 1; }; }; end
Because their positions are not the same in the program they have

different numbers of line. So, we label them with x := x + 1 a© and
x := x+ 1 b© to distinguish each one from the other.

FIGURE 5 Loops with Labelling (1)

P1 � P2 � P3

loop m x := x+ 1 a© loop n
x := x+ 1 a© loop n x := x+ 1 b©
loop n x := x+ 1 b© loop m

x := x+ 1 b© loop m x := x+ 1 a©
x := x+ 1 a© loop n
loop n x := x+ 1 b©

x := x+ 1 b©

FIGURE 6 Loops with Labelling (2)

P3 � P4 � . . .

loop n x := x+ 1 b©
x := x+ 1 b© loop n

loop m x := x+ 1 b©
x := x+ 1 a© loop m
loop n x := x+ 1 a©

x := x+ 1 b© loop n
x := x+ 1 b©

We can replace the program P2 of figure 5 by the program P4 of
figure 6 without changing anything except the labels. The commands
x := x + 1 a© and x := x + 1 b© are the same for the operational
semantics, so we should find another way to keep track of the current
command.

We will not use booleans b0, b1, . . . , blength(P) indexed by the lines of

April 5, 2016

24 / Yoann Marquer and Pierre Valarcher

the program, but booleans indexed by the possible states of the program
during the execution. The possible executions of a program will be
represented by a graph where the edges are the possible transitions,
and the vertices are the possible programs:

Example 13. (Graph of Execution of Pmin)

r := 0
loop n except r = m

r := r + 1

loop n except r = m
r := r + 1

r := r + 1
loop n except r = m

r := r + 1

end

In the following only the vertices of the graph are needed, so the
graph of execution of Pmin will be denoted by the set of possible pro-
grams:

G(Pmin) = { r := 0; loop n except r = m {r := r + 1; }; end,
loop n except r = m {r := r + 1; }; end,

r := r + 1; loop n except r = m {r := r + 1; }; end,
end

}
Notation 14. In order to define graphs of execution we need to introduce
the notation:

G;P =def {Pj ;P | Pj ∈ G}
where G is a set of imperative programs and P is an imperative pro-
gram.

Let P be an imperative program. G(P) is the set of every possible
τ tX(P) programs, which does not depend on an initial state X:

Definition 12. (Graph of Execution)

G(end) =def {end}
G(c;P) =def G(c);P ∪ G(P)

G(f(t1, . . . , tα) := t0) =def {f(t1, . . . , tα) := t0; end}
G(if F {P1} else {P2}) =def {if F {P1} else {P2}; end

∪ G(P1) ∪ G(P2)
G(loop n except F {P}) =def G(P); loop n except F {P}; end

As intended, we can prove (see [16]) that card(G(P)) ≤ length(P)+1.

An Imperative Language Characterizing PTIME Algorithms / 25

April 5, 2016

So, only a finite number of guards depending only on P are necessary.
Notice that for some programs (like Pmin in example 13 p.24) which do
not follow example 12 p.23, card(G(P)) = length(P)+1 can be reached,
so the bound is optimal.

Again, to focus on the simulation, we admit in this paper the proof
(see [16]) stating that a graph of execution is closed for the operational
semantics of the imperative programs:

Proposition 3. (Operational Closure of Graph of Execution)

. If f(t1, . . . , tα) := t0;Q ∈ G(P)
then Q ∈ G(P)

. If if F {P1} else {P2};Q ∈ G(P)
then P1;Q and P2;Q ∈ G(P)

. If loop n except F {P1};Q ∈ G(P)
then P1; loop n except F {P1};Q and Q ∈ G(P)

3.2 Translation of an Imperative Program

Notation 15. The fresh boolean variables will be denoted bPj , where
Pj ∈ G(P). One and only one bPj will be true for each step of an
execution, so in the following we will write X[bPj] if bPj is true and the
other booleans bPk are false, where X denotes a L(P)-structure. Notice
that X[bPj]|L(P) = X.

Proposition 3 ensures that the following translation is well-defined:

Definition 13. (Translation of imperative programs into ASM)

ΠP =def par
Pj∈G(P)

if bPj then P trj endpar

where P trj is defined at the figure 7 p.26.

Notice that for every Pj ∈ G(P), ∆(ΠP , X[bPj]) = ∆(P trj , X[bPj]).
We use this fact in [16] to prove by exhaustion on τ tX(P) that the
translation of the imperative program P behaves as intended:

Proposition 4. (Step-by-Step Simulation)

For every t < time(P,X), τΠP (τ tP (X)[bτtX(P)]) = τ t+1
P (X)[bτt+1

X (P)]

Theorem 16. ASM fairly simulates LoopC.

Proof. We prove the three conditions of the fair simulation defined p.11:

1. L(ΠP) = L(P) ∪ {bPj | Pj ∈ G(P)}
where card({bPj | Pj ∈ G(P)}) ≤ length(P) + 1.

2. Using proposition 4, we can prove by induction on t ≤ time(P,X)
that τ tΠP (X[bP]) = τ tP (X)[bτtX(P)].

April 5, 2016

26 / Yoann Marquer and Pierre Valarcher

FIGURE 7 Translation of an Imperative Program

(end)tr =def par endpar

(f(t1, . . . , tα) := t0;Q)tr

=def

par bf(t1,...,tα):=t0;Q := false
‖ f(t1, . . . , tα) := t0
‖ bQ := true

endpar

(if F then {P1} else {P2};Q)tr

=def

par bif F then {P1} else {P2};Q := false
‖ if F then

bP1;Q := true
else

bP2;Q := true
endif

endpar

(loop n except F {end};Q)tr

=def

if (i 6= n ∧ ¬F) then
i := i+ 1

else

par bloop n except F {end};Q := false
‖ i := 0
‖ bQ := true

endpar

endif

(loop n except F {c;P1};Q)tr

=def

par bloop n except F {c;P1};Q := false
‖ if (i 6= n ∧ ¬F) then

par i := i+ 1
‖ bc;P1;loop n except F {c;P1};Q := true

endpar

else

par i := 0
‖ bQ := true

endpar

endif

endpar

An Imperative Language Characterizing PTIME Algorithms / 27

April 5, 2016

So, τ tΠP (X[bP])|L(P) = τ tP (X), and the temporal dilation is

d = 1 .

3. If t = time(P,X) then τ tX(P) = end.
So, ∆(ΠP , τ

t
P (X)[bτtX(P)]) = ∅, and τ t+1

ΠP
(X[bP]) = τ tΠP (X[bP]).

Therefore, time(ΠP , X[bP]) ≤ time(P,X). (1)
Let t < time(P,X). According to the operational semantics 7:
If τ tX(P) ? τ tP (X) � τ t+1

X (P) ? τ t+1
P (X) then τ tX(P) 6= τ t+1

X (P) or
τ tX(P) = loop n except F {};Q.
In the first case, bτtX(P) 6= bτt+1

X (P), and in the second case

τ tP (X) 6= τ t+1
P (X), since i

τt+1
P (X)

= i
τtP (X)

+ 1.
In any case, τ t+1

P (X)[bτt+1
X (P)] 6= τ tP (X)[bτtX(P)].

So, τ t+1
ΠP

(X[bP]) 6= τ tΠP (X[bP]).
Therefore, time(ΠP , X[bP]) ≥ time(P,X). (2)
According to (1) and (2), time(ΠP , X[bP]) = time(P,X), so

e = 0 .

a

Therefore, as stated in the conclusion, ASMs in polynomial time
can fairly simulate programs of PLoopC, since (according to proposition
2 p.20) they are in polynomial time, and PLoopC is a sublanguage of
LoopC.

4 PLoopC Simulates Polynomial-Time ASM

Let Π be an ASM program with a polynomial-time complexity ϕΠ ∈ P.
The purpose of this section is to find a PLoopC program Pstep simulating
the same executions as Π. We construct this program Pstep in three
steps:

1. Translate Π into an imperative program Pstep simulating one step
of the ASM.

2. Repeat Pstep a sufficient number of times, depending on ϕΠ, the
complexity of Π.

3. Ensure that the final program stops at the same time as the ASM,
up to temporal dilation.

4.1 Translation of one Step

Remember that Π contains only updates, if and par commands. The
intuitive solution is to translate the commands directly, without paying
attention to the parallelism:

April 5, 2016

28 / Yoann Marquer and Pierre Valarcher

Definition 14 (Syntactical Translation of the ASM programs).

(f(t1, . . . , tα) := t0)tr

=def f(t1, . . . , tα) := t0; end
(if F then Π1 else Π2 endif)tr

=def if F then {Πtr
1 } else {Πtr

2 }; end
(par Π1‖ . . . ‖Πn endpar)tr

=def Πtr
1 ; . . . ; Πtr

n

Updates and if commands are the same in these two models of
computation, but the simultaneous commands of ASM must be sequen-
tialized in LoopC, so this translation does not respect the semantics of
the ASM programs:

Example 17. Let X be a structure such that xX = 0 and yX = 1, and
Π be the program:

Π = par x := y‖y := x endpar

Since both updates are done simultaneously, the semantics of Π is to
exchange the value of x and y. In that case ∆(Π, X) = {(x, 1), (y, 0)},
so τΠ(X) = X ⊕ {(x, 1), (y, 0)}.

Πtr = x := y; y := x; end

But the semantics of Πtr is to replace the value of x by the value of
y and leave y unchanged. In that case, we have the following execution:

x := y; y := x; end ? X
� y := x; end ? X ⊕ {(x, 1)}
� end ? X ⊕ {(x, 1), (y, 1)}

So τΠ(X) = X ⊕ {(x, 1), (y, 0)} 6= X ⊕ {(x, 1), (y, 1)} = Πtr (X).
In order to capture the simultaneous behavior of the ASM program,

we need to store the values of the variables read in the imperative
program. As an example, if vx = x and vy = y in X then:

x := vy; y := vx; end ? X
� y := vx; end ? X ⊕ {(x, 1)}
� end ? X ⊕ {(x, 1), (y, 0)}

Indeed, even if x has been updated, its old value is still in vx.

Definition 15 (Substitution of a Term by a Variable).

(f(t1, . . . , tα) := t0)[v/t]
=def f(t1[v/t], . . . , tα[v/t]) := t0[v/t]

(if F then Π1 else Π2 endif)[v/t]
=def if F [v/t] then Π1[v/t] else Π2[v/t] endif

(par Π1‖ . . . ‖Πn endpar)[v/t]
=def par Π1[v/t]‖ . . . ‖Πn[v/t] endpar

An Imperative Language Characterizing PTIME Algorithms / 29

April 5, 2016

where t1[v/t2] =def

{
v if t1 = t2
t1 else

Remarque 13. Since the temporary variables are fresh, if t1 and t2
are distinct terms then Π[vt1/t1][vt2/t2] = Π[vt2/t2][vt1/t1] As a conse-
quence, since the substitutions can be made in any order, for the terms
t1, . . . , tr read by Π (see the definition p.12), the notation Π[~vt/~t] is not
ambiguous.

But using Π[~vt/~t]
tr for Pstep is not sufficient, because two issues

remain:

1. The variables ~vt must be initialized with the value of the terms ~t.
Because the fresh variables must have a uniform initialization
(see p.10), we have to update the variables ~vt explicitly at the
beginning of the program by using a sequence of updates:

vt1 := t1; . . . ; vtr := tr;

2. The execution time depends on the current initial state.
This is an issue because, according to our definition of the fair
simulation p.11, every step of the ASM Π must be simulated by
d steps, where d depends only on Π. In order to obtain a uniform
temporal dilation, we will add skip commands17 to the program:

skip 0 =def end

skip n+ 1 =def if true {}; skip n
According to the Gurevich’s Theorem, every ASM is equivalent to

an ASM in normal form, so we can assume that Π is in normal form
(see p.14). Therefore, its translation has the form:

if F1 then {Πtr
1 };

if F2 then {Πtr
2 };

...
if Fc then {Πtr

c };
end

Remind that every F is a guard, which means that one and only
one Fi is true for the current state X. The block of updates Πtr

i =
u1; . . . ;umi ; end requires mi steps to be computed by the imperative
program, so we add skip m −mi at the end of the block, where m is

17It may seem strange in an algorithmic purpose to lose time, but these skip

commands do not change the asymptotic behavior and are necessary for our strict
definition of the fair simulation. It is possible to weaken the definition of the sim-
ulation to simulate one step with ≤ d steps and not = d steps, but we wanted to
prove the result for the strongest definition possible.

April 5, 2016

30 / Yoann Marquer and Pierre Valarcher

defined by:
m =def max{mi | 1 ≤ i ≤ c}

FIGURE 8 Translation Pstep of one Step of Π

Pstep =def

vt1 := t1;
vt2 := t2;
...
vtr := tr;
if vF1

then {
f1

1 (~vt11) := vt11 ;

f1
2 (~vt12) := vt12 ;

...
f1
m1

(~vt1m1
) := vt1m1

;

skip m−m1;
};
if vF2

then {
f2

1 (~vt21) := vt21 ;

f2
2 (~vt22) := vt22 ;

...
f2
m2

(~vt2m2
) := vt2m2

;

skip m−m2;
};
...
if vFc then {

f c1(~vtc1) := vtc1 ;
f c2(~vtc2) := vtc2 ;
...
f cmc(~vtcmc) := vtcmc ;

skip m−mc;
};

end

We obtain at figure 8 p.30 the translation Pstep of one step of the
ASM program Π. Let X be a state of the ASM with program Π, ex-
tended with the variables ~vt. As intended, we prove that Pstep simulates
one step of Π in a constant time tΠ:

An Imperative Language Characterizing PTIME Algorithms / 31

April 5, 2016

Proposition 5 (Semantical Translation of the ASM programs).
There exists tΠ, depending only on Π, such that for every state X of

Pstep:

. (Pstep(X)	X)|L(Π) = ∆(Π, X|L(Π))

. time(Pstep , X) = tΠ

Proof. The sequence of updates vt1 := t1; . . . ; vtr := tr; requires r steps.
Because the variables ~vt are fresh they don’t appear in the terms ~t. So,

in the state Y after these updates, vtk
Y = tk

X
. Moreover, in the rest

of the program the variables ~vt are not updated, so for every following

state Y , vtk
Y = tk

X
.

In particular, for every 1 ≤ j ≤ c, vFj
Y = Fj

X
. Since these con-

ditionals are guards, one and only one is true in X. Let Fi be this
formula. Therefore, in every following state Y , vFi

Y = true, and for
every j 6= i, vFj

Y = false.
i− 1 steps are required to erase the conditionals before Fi, one step

is required to enter the block of Fi, and after the commands in that
block c − i steps are required to erase the conditionals after Fi. So,
(i− 1) + 1 + (c− i) = c steps are required for the conditionals.

Since for every following state Y , vtk
Y = tk

X
, the set of updates done

in the block of Fi is ∆(Π, X|L(Π)). These updates require mi steps, then
the skip command requires m−mi steps. So the commands in the block
require mi+ (m−mi) = m steps, and the execution time depends only
on Π:

time(Pstep , X) = r + c+m = tΠ

The updates done by Pstep are the initial updates and the updates
done in the block of Fi:

∆(Pstep , X) = {(vt1 , t1
X

), . . . , (vtr , tr
X

)} ∪∆(Π, X|L(Π))

The fresh variables are updated only once, and since Π is in normal
form, ∆(Π, X|L(Π)) is consistent. So, Pstep is without overwrite on X,
and according to proposition 1 p.17:

∆(Pstep , X) = Pstep(X)	X

So (Pstep(X)	X)|L(Π) = ∆(Π, X|L(Π)). a

More generally, we can use this result to prove by induction on t
that:

Corollaire 14. P tstep(X)|L(Π) = τ tΠ(X|L(Π))

April 5, 2016

32 / Yoann Marquer and Pierre Valarcher

4.2 Translation of the Complexity

Pstep simulates in constant time one step of the ASM program Π, so
we want to repeat it a sufficient number of times in order to simulate
every execution of the ASM. In this paper we focus on the polynomial
time algorithms, so we assume that there exists a polynomial function
ϕΠ such that for every initial state X:

time(Π, X) ≤ ϕΠ(|X|)
Since ϕΠ is a polynomial function, there exists a0, . . . , adeg(ϕΠ) ∈ Z

such that:

ϕΠ(|X|) =
∑

0≤n≤deg(ϕΠ)

an|X|n ≤

 ∑
0≤n≤deg(ϕΠ)

max (0, an)

 |X|deg(ϕΠ)

Therefore, there exists c ∈ N depending only of ϕΠ, such that:

time(Π, X) ≤ c× |X|deg(ϕΠ)

We assume that the program has access to the size of its inputs, so it
has access to |X|, which is the maximum (or the sum) of these values.
Therefore, the following program has an execution time greater than Π
on X, where c and size are fresh variables initialized respectively with∑
0≤n≤deg(ϕΠ)

max (0, an) and |X|:

loop c
loop size

. . . deg(ϕΠ) times
loop size

Notice that according to the definition 11 p.19, the depth of this
program is deg(ϕΠ). The intuitive program repeating Pstep is:

loop c
loop size

. . .

loop size
Pstep

In that case, between two executions of Pstep the number of steps
depends on the actual depth in the program, so the simulation will not
have a constant temporal dilation. We want the program to execute one
step of a loop then to execute Pstep , then to execute another step of a
loop and so on. . . So, we need to duplicate18 Pstep before each body of a

18Like in [1], with the difference that we choose to have every execution of Pstep

An Imperative Language Characterizing PTIME Algorithms / 33

April 5, 2016

loop (when the execution enters a loop) and after each loop command
(when the execution erases a loop):

loop c
Pstep

loop size
Pstep

. . .

loop size
Pstep

Pstep

. . .

Pstep

Pstep

As a consequence, our candidate is

loop c {Pstep ; loopdeg(ϕΠ) size {Pstep}};Pstep

where loopi n {P} is defined by induction:

loop0 n {P} =def end

loopi+1 n {P} =def loop n {P ; loopi n {P}};P
The temporal dilation is d = tΠ + 1, since the program alternates

between loop commands and executions of Pstep . But we can’t ensure
that the program stops at the same time as Π, so we need to detect the
end of the execution.

For any initial state of the program Pstep , the fresh variables ~vt
store the value of the interpretation of the terms ~t, then the terms ~t are
updated. This means that at the end of Pstep the variables ~vt have the
old values of the terms. In particular, if the initial state is P tstep(X),
after one execution of Pstep we have:

vtk
P t+1

step (X) = tk
P tstep(X)

Π terminates when no more updates are done. In that case, the old
values of the terms read by Π are the same as the new values. Therefore,
since the old values are stored in the variables ~vt, every vtk is equal to
tk in the terminating state:

FΠ =def

∧
t∈Read(Π)

vt = t

after every command of the program, not before. This will make sense when we will
add one occurrence of Pstep before the program in order to initialize the µ-formula
FΠ.

April 5, 2016

34 / Yoann Marquer and Pierre Valarcher

We call it the “µ-formula” because it is similar to the minimization
operator µ from recursive functions (see [7]):

Lemme 15 (The µ-formula).

time(Π, X|L(Π)) = min{t ∈ N | FΠ
P t+1

step (X)
= true}

Proof. time(Π, X|L(Π)) = min{t ∈ N | τ tΠ(X|L(Π)) = τ t+1
Π (X|L(Π))}, so

all that is left to prove (see [16]) is that τ tΠ(X|L(Π)) = τ t+1
Π (X|L(Π)) if

and only if FΠ
P t+1

step (X)
is true, by using the remark p.13 on Read(Π). a

So, the current candidate to simulate the ASM program Π is the
program:

loop c except FΠ

if ¬FΠ {Pstep}
loop size except FΠ

if ¬FΠ {Pstep}
. . .

loop size except FΠ

if ¬FΠ {Pstep}
if ¬FΠ {Pstep}

. . .

if ¬FΠ {Pstep}
if ¬FΠ {Pstep}

The temporal dilation becomes d = tΠ + 2, since entering the condi-
tionals costs one more step. But two issues remain:

1. The variables ~vt must be properly initialized to obtain a correct
value for the µ-formula FΠ. We do that simply by adding an
occurrence of Pstep at the beginning of the program. FΠ becomes
true after time(Π, X|L(Π)) + 1 steps, so we execute the program
Pstep one more time after the end of Π. This is not an issue
because the execution time of Pstep is tΠ, as required by the third
condition of the fair simulation.

2. The simulation is correct until FΠ becomes true, and after that
the remaining steps consist to erase the last loop commands.
But their number depends on the current depth, determined by
the initial state. This number is bounded by deg(ϕΠ) + 1, so
the current ending time can be bounded too. In fact, for every
remaining loop commands two steps are done: erase the loop then
erase the following if ¬FΠ {Pstep}. Therefore, the ending time is

An Imperative Language Characterizing PTIME Algorithms / 35

April 5, 2016

bounded19 by max end = 2× (deg(ϕΠ) + 1).

By using a fresh variable iend which counts the number of steps
done after FΠ became true, we can add at the end of the program the
program skip iend → max end defined by:

skip i→ 0 =def end

skip i→ m+ 1 =def if i = m+ 1 {end} else {skip i→ m}; end

For every state X, we can prove by induction on 0 ≤ iend
X ≤

max end
X that:

time(skip iend → maxend, X) = max end
X − iend

X
+ 1

It remains to set the correct value for iend . This variable is initialized
to 0 and for each remaining loop commands three steps are done: erase
the loop, enter the if and update iend . So, we replace in our candidate
program each if ¬FΠ {Pstep} by if ¬FΠ {Pstep} else {iend := iend +
3; end}, and max end becomes 3× (deg(ϕΠ) + 1).

4.3 The Simulation

For every ASM program Π we obtain at figure 9 its translation PΠ

simulating the execution of Π:

Theorem 18. PLoopC fairly simulates ASMP .

Proof. We prove the three conditions of the fair simulation defined p.11:

1. L(PΠ) = L(Π) t {vt | t ∈ Read(Π)} t {c, size, iend}
So, there is a finite number of fresh variables, depending only on
Π.

2. Until FΠ becomes true the execution alternates between:

(a) tΠ steps of Pstep , which simulates one step of Π, according
to proposition 5 p.31.

(b) Then one step to enter the body of a loop, or erase a loop
command.

(c) Then one step to enter the conditional if ¬FΠ {Pstep}, then
repeat from the beginning.

So, each step of Π is simulated by exactly d = tΠ + 2 steps of
its translation PΠ.
Moreover, the execution is sufficiently long. Indeed, if c and size
are initialized respectively with

∑
0≤n≤deg(ϕΠ)

max (0, an) and |X0|

19maxend does not depend of the initial state so we can use constructors instead
of a variable, and define skip i → m by induction on m. We cannot do that for c
because contrary to conditionals, loop commands can only be bounded by a variable,
not a term.

April 5, 2016

36 / Yoann Marquer and Pierre Valarcher

FIGURE 9 Translation PΠ of the ASM program Π

Pstep

loop c except FΠ

if ¬FΠ {Pstep} else {iend := iend + 3; end}
loop size except FΠ

if ¬FΠ {Pstep} else {iend := iend + 3; end}
. . . deg(ϕΠ) times

loop size except FΠ

if ¬FΠ {Pstep} else {iend := iend + 3; end}
if ¬FΠ {Pstep} else {iend := iend + 3; end}

. . . deg(ϕΠ) times
if ¬FΠ {Pstep} else {iend := iend + 3; end}

if ¬FΠ {Pstep} else {iend := iend + 3; end}
skip iend → maxend

in an initial state X0 then:

time(Π, X) ≤ cX0 × (size
X0

)deg(ϕΠ)

Notice that c and size are never updated, so this inequality holds
for every state of the execution. Moreover, since c does not depend
on the chosen initial state, according to definition 11 p.19:

depth(PΠ) = deg(ϕΠ)

3. Therefore, time(Π, X|L(Π)) repetitions of these steps simulate the
ASM program. Then, according to lemma 15 p.34, tΠ more steps
for the last iteration of Pstep make FΠ true20.
Then, until skip iend → maxend is reached, the execution alter-
nates between:

(a) One step to erase a loop command.
(b) Then one step to enter the else part of the conditional

if ¬FΠ.
(c) Then one step iend := iend + 3, then repeat from the begin-

ning.

Because the variable iend is initialized to 0, when skip iend →
maxend is reached at the state Xfinal the value iend

Xfinal
is the number

of steps done since FΠ is true. Then max end
Xfinal − iend

Xfinal
+ 1 steps

20Even if time(Π, X|L(Π)) = 0, in which case the initial Pstep executes all these
steps.

An Imperative Language Characterizing PTIME Algorithms / 37

April 5, 2016

are done by skip iend → maxend. Therefore, the ending time is:

e = tΠ + iend
Xfinal

+ max end
Xfinal − iend

Xfinal
+ 1 = tΠ + max end

Xfinal + 1

So e = tΠ + 3× (deg(ϕΠ) + 1) + 1

a

5 Conclusion and Discussion

We proved p.35 that ASM fairly simulates LoopC. So, because PLoopC is
a sublanguage of LoopC with polynomial time (see p.20), ASMP fairly
simulates PLoopC. Reciprocally, we proved p.25 that PLoopC fairly sim-
ulates ASMP . Therefore, according to the definition p.11 of the algorith-
mic equivalence, PLoopC characterizes polynomial time algorithms:

Theorem 19. PLoopC ' AlgoP .

This result can be seen as an end of the quest for an algorithmically
complete language for the set of PTIME algorithms.

Moreover, this language does not require constraints on data struc-
tures to be PTIME, unlike PLoop (see [21]).

Nevertheless, PLoopC is not very practicable:

. It is not fully compositional. Indeed, in P1;P2, we must ensure that
the inputs of P2 are not outputs of P1.

. And moreover, it is difficult to program in this language because the
complexity must be anticipated before writing the program.

In order to obtain the better of both worlds, it would be pleasant
to construct an intermediary language, between our PLoopC and Neer-
gaard’s PLoop.

We do not need every possible first order structures, only common
data structures, which are stronger than Neergaard’s translations. So,
we are looking for a compromise, by using a restriction on data struc-
tures, in order to gain more flexibility from a programmer’s perspective.

But, the fact remains that other PTIME languages can be compared
to PLoopC for the algorithmic completeness.

References

[1] Andary P., Patrou B. and Valarcher P., A theorem of representa-
tion for primitive recursive algorithms, Fundamenta Informaticae,
XX (2010), pp. 118.

[2] Bellantoni S., and Cook S., A new recursion-theoretic characteri-
sation of the polytime functions, Computational complexity, vol. 2
(1992), pp. 97110.

April 5, 2016

38 / Yoann Marquer and Pierre Valarcher

[3] Blass A., Dershowitz N., and Gurevich Y., When are two algo-
rithms the same?, Bull. Symbolic Logic Volume 15, Issue 2 (2009),
145-168.

[4] Bonfante G., Some programming languages for LOGSPACE and
PTIME, 11th International Conference, AMAST 2006, Kures-
saare, Estonia, July 5-8, 2006.

[5] Borger E., Abstract State Machines: A Unifying View of Models of
Computation and of System Design Frameworks, Annals of Pure
and Applied Logic (2005).

[6] Colson L., About primitive recursive algorithms, Theoretical Com-
puter Science, 83 (1991) 5769.

[7] Cori R., Lascar D., and Pelletier D., Mathematical Logic: A Course
With Exercises: Part I and II, Paris, Oxford University Press (2000,
2001).

[8] Dershowitz N. and Gurevich Y., A natural axiomatization of
church’s thesis. Bulletin of symbolic logic, 2008.

[9] Doyle P., Dexter S., and Gurevich Y., Gurevich abstract state ma-
chine and schonhage storage modification machines. J. Universal
Computer Science, 3(4):279–303, 1997.

[10] Gurevich Y., Sequential abstract state machines capture sequential
algorithms. ACM Transactions on Computational Logic, 1:77–111,
2000.

[11] Gurevich Y., Evolving Algebras 1993: Lipari Guide. In Specifica-
tion and Validation Methods, pages 9–36. Oxford University Press,
1993.

[12] Gurevich Y., Sequential Abstract State Machines Capture Se-
quential Algorithms, ACM Transactions on Computational Logic
(2000).

[13] Grigorieff S and Valarcher P., Evolving Multialgebras unify all
usual models for computation in sequential time, Symposium on
Theoretical Aspects of Computer Science (2010).

[14] Grigorieff S and Valarcher P., Classes of Algorithms: Formalization
and Comparison, Bulletin of the EATCS 107 (2012).

[15] Krivine J.-L., A call-by-name lambda-calculus machine, Higher
Order and Symbolic Computation 20 (2007) 199-207.

[16] Marquer Y., Caractérisation impérative des algorithmes séquen-
tiels en temps quelconque, primitif récursif ou polynomial,
dr-apeiron.net/doku.php/en:research:thesis-defense
(thesis defended in 2015).

[17] Marquer Y., Algorithmic Completeness of Imperative Program-
ming Languages, dr-apeiron.net/doku.php/en:research:fi-while
(in revision for Fundamenta Informaticae).

An Imperative Language Characterizing PTIME Algorithms / 39

April 5, 2016

[18] Meyer A. R. and Ritchie D. M., The complexity of loop programs.
In Proc. ACM Nat. Meeting, 1976.

[19] Moschovakis Y. N., On primitive recursive algorithms and the
greatest common divisor function. Theor. Comput. Sci., 301(1-
3):1–30, 2003.

[20] Moschovakis Y. N., What is an algorithm ? In Springer, editor,
Mathematics unlimited – 2001 and beyond, pages 919–936. B. En-
gquist and W. Schmid, 2001.

[21] Neergaard P. M., Ploop: A Language For Polynomial Time, 2003.
[22] Niggl K.-H., Control structures in programs and computational

complexity, Annals of Pure and Applied Logic, Volume 133, Issues
13, May 2005, Pages 247–273.

[23] Michel D., and Valarcher P., A total functional programming lan-
guage that computes APRA, Studies in Weak Arithmetic, Stan-
ford, CSLI Lecture Notes, 2009

[24] Vinar T., Biedl T., Buss J., Demaine E. D., Demaine M. L., and
Hajiaghayi M., Palindrome recognition using a multidimensional
tape, Theoretical Computer Science 302 (2003).

