Color code: \problem, \yoann, \luidnel.
Luidnel, you can prove the lemmas with the To do ! tag from p. 35 to p. 35.

1 FIELDS

For the Coq implementation, the fields are computed using booleans but the results will be proven using propositions (cite Software Foundations ?). The definition are simplified (quantifier elimination) for the implementation, as opposed to the paper (cite finitization).

The boolean function gen is given with the evolution, and or, and and if ... then ... else ... will be the standard booleans operations.

Definition 1.1 (Input Field).

$$
\begin{align*}
\operatorname{inp}_{0}(c) & \stackrel{\text { def }}{=} \operatorname{gen}(c) \\
\operatorname{inp}_{t+1}(c) & \stackrel{\text { def }}{=} \operatorname{inp}_{t}(c-1) \text { or } \operatorname{inp}_{t}(c) \text { or } \operatorname{inp}_{t}(c+1) \\
\operatorname{Inp}_{0}(c) & \stackrel{\text { def }}{=} \operatorname{gen}(c)=\text { true } \\
\operatorname{Inp}_{t+1}(c) & \stackrel{\text { def }}{=} \operatorname{Inp}_{t}(c-1) \vee \operatorname{Inp}_{t}(c) \vee \operatorname{Inp}_{t}(c+1) \tag{1}
\end{align*}
$$

Like this definition, the boolean fields will be written with lowercase, and the proposition fields in uppercase. The Coq file contains the proof of equivalence, but they will be admitted in this report.

Lemma 1.2 (Equivalence for Inp).

$$
\forall t c, \operatorname{Inp}_{t}(c) \Leftrightarrow \operatorname{inp}_{t}(c)=\operatorname{true}
$$

We assume in the following that the cells are labeled from 1 to n. For the sake of clarity, the $=$ and $<$ will not be distinguished from their boolean equivalent, as it is in Coq. The recursive definition of the proposition fields is:

Definition 1.3 (Proposition Fields).

$$
\begin{align*}
& \operatorname{Brd}_{t}^{0}(c) \stackrel{\text { def }}{=} \operatorname{Inp}_{t}(c) \wedge(1=c \vee c=n) \\
& \operatorname{Brd}_{t}^{\ell+1}(c) \stackrel{\text { def }}{=} \operatorname{Brd}_{t}^{\ell}(c) \vee \operatorname{Mid}_{t}^{\ell}(c) \tag{2}\\
& \operatorname{Ins}_{t}^{0}(c) \stackrel{\text { def }}{=} \operatorname{Inp}_{t}(c) \wedge 1<c \wedge c<n \\
& \operatorname{Ins}_{0}^{\ell+1}(c) \stackrel{\text { def }}{=} \text { False } \\
& \operatorname{Ins}_{t+1}^{\ell+1}(c) \stackrel{\text { def }}{=} \operatorname{Ins}_{t+1}^{\ell}(c) \wedge \operatorname{Sta}_{t+1}^{\ell}(c) \\
& \wedge\left(\operatorname{dst}_{t+1}^{\ell}(c)<\operatorname{dst}_{t}^{\ell}(c-1) \vee \operatorname{dst}_{t+1}^{\ell}(c)<\operatorname{dst}_{t}^{\ell}(c-1)\right) \tag{3}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Sta}_{0}^{\ell}(c) \stackrel{\text { def }}{=} & \operatorname{Brd}_{0}^{\ell}(c) \\
\operatorname{Sta}_{t+1}^{\ell}(c) \stackrel{\text { def }}{=} & \operatorname{Brd}_{t+1}^{\ell}(c) \\
& \vee\left(\operatorname{dst}_{t+1}^{\ell}(c)=1+\operatorname{dst}_{t}^{\ell}(c-1) \wedge \operatorname{Sta}_{t}^{\ell}(c-1)\right) \\
& \vee\left(\operatorname{dst}_{t+1}^{\ell}(c)=1+\operatorname{dst}_{t}^{\ell}(c+1) \wedge \operatorname{Sta}_{t}^{\ell}(c+1)\right) \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{Mid}_{0}^{\ell}(c) \stackrel{\text { def }}{=} \text { False } \\
& \operatorname{Mid}_{t+1}^{\ell}(c) \stackrel{\text { def }}{=}\left(\operatorname{dst}_{t+1}^{\ell}(c)>\max \left(\operatorname{dst}_{t}^{\ell}(c-1), \operatorname{dst}_{t}^{\ell}(c+1)\right)\right. \\
&\left.\wedge \operatorname{Sta}_{t}^{\ell}(c-1) \wedge \operatorname{Sta}_{t}^{\ell}(c+1)\right) \\
& \vee\left(\operatorname{dst}_{t+1}^{\ell}(c)=\max \left(\operatorname{dst}_{t}^{\ell}(c-1), \operatorname{dst}_{t}^{\ell}(c+1)\right)\right. \\
&\left.\wedge \operatorname{Sta}_{t}^{\ell}(c-1) \wedge \operatorname{Sta}_{t}^{\ell}(c) \wedge \operatorname{Sta}_{t}^{\ell}(c+1)\right) \tag{5}
\end{align*}
$$

where dst is an integer field computed along the booleans fields.
Coq cannot guess* how to compute such an intricated recursion, so the recursive definition of the booleans fields is sliced into abstract parts for different given levels. Firstly, using the input field, the border and inside fields are defined for the level 0 :
*At least at my knowledge...

Definition 1.4 (Border and Inside Fields at level 0).

$$
\begin{aligned}
& \operatorname{brd} 0(t, c) \stackrel{\text { def }}{=} \operatorname{inp}_{t}(c) \text { and }(1=c \text { or } c=n) \\
& \operatorname{ins} 0(t, c) \stackrel{\text { def }}{=} \operatorname{inp}_{t}(c) \text { and } 1<c \text { and } c<n
\end{aligned}
$$

Then, the distance, stability and middle fields are defined for every level ℓ, assuming that the border and inside fields are defined too at this level:

Definition 1.5 (Distance, Stability and Middle Fields).

$$
\begin{aligned}
\operatorname{dstL}(0, c, \text { insL }) \stackrel{\text { def }}{=} & 0 \\
\operatorname{dstL}(t+1, c, \operatorname{insL}) \stackrel{\text { def }}{=} & \text { if } \operatorname{insL}(t+1, c) \\
& \text { then } 1+\min (\operatorname{dstL}(t, c-1), \operatorname{dstL}(t, c+1)) \\
& \text { else } 0
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{staL}(0, c, \operatorname{brdL}, \operatorname{dstL}) \stackrel{\text { def }}{=} \operatorname{brdL}(0, c) \\
& \operatorname{staL}(t+1, c, \operatorname{brdL}, \operatorname{dstL}) \stackrel{\text { def }}{=} \operatorname{brdL}(t+1, c) \\
& \text { or }(\operatorname{dstL}(t+1, c)=1+\operatorname{dstL}(t, c-1) \text { and } \operatorname{staL}(t, c-1)) \\
& \text { or }(\operatorname{dstL}(t+1, c)=1+\operatorname{dstL}(t, c+1) \text { and } \operatorname{staL}(t, c+1))
\end{aligned}
$$

$\operatorname{midL}(0, c, \operatorname{dstL}, \mathrm{staL}) \stackrel{\text { def }}{=}$ false
$\operatorname{midL}(t+1, c, \mathrm{dstL}, \operatorname{staL}) \stackrel{\text { def }}{=}(\operatorname{dstL}(t+1, c)>\max (\operatorname{dstL}(t, c-1), \operatorname{dstL}(t, c+1))$ and $\operatorname{staL}(t, c-1)$ and $\operatorname{staL}(t, c+1))$
or $(\operatorname{dstL}(t+1, c)=\max (\operatorname{dstL}(t, c-1), \operatorname{dstL}(t, c+1))$
and $\operatorname{staL}(t, c-1)$ and $\operatorname{staL}(t, c)$ and $\operatorname{staL}(t, c+1))$
Finally, the border and inside fields for the level $\ell+1$ are defined using the fields defined for the level ℓ :

Definition 1.6 (Border and Inside Fields at level $\ell+1$).

$$
\begin{aligned}
& \operatorname{brdS}(t, c, \operatorname{brdL}, \operatorname{midL}) \stackrel{\text { def }}{=} \operatorname{brdL}(t, c) \text { or } \operatorname{midL}(t, c) \\
& \operatorname{insS}(0, c, \operatorname{insL}, \operatorname{dstL}, \operatorname{staL}) \stackrel{\text { def }}{=} \text { false } \\
& \operatorname{insS}(t+1, c, \operatorname{insL}, \operatorname{dstL}, \operatorname{staL}) \stackrel{\text { def }}{=} \operatorname{insL}(t+1, c) \text { and } \operatorname{staL}(t+1, c) \\
& \text { and }(\operatorname{dstL}(t+1, c)<\operatorname{dstL}(t, c-1) \operatorname{or} \operatorname{dstL}(t+1, c)<\operatorname{dstL}(t, c-1))
\end{aligned}
$$

So the boolean fields should be defined by this mutual recursion:

$$
\begin{aligned}
\operatorname{brd}_{t}^{0}(c) & \stackrel{\text { def }}{=} \operatorname{brd} 0(t, c) \\
\operatorname{brd}_{t}^{\ell+1}(c) & \stackrel{\text { def }}{=} \operatorname{brdS}\left(t, c, \operatorname{brd}^{\ell}, \operatorname{mid}^{\ell}\right) \\
\operatorname{ins}_{t}^{0}(c) & \stackrel{\text { def }}{=} \operatorname{ins} 0(t, c) \\
\operatorname{ins}_{t}^{\ell+1}(c) & \stackrel{\text { def }}{=} \operatorname{insS}\left(t, c, \mathrm{ins}^{\ell}, \mathrm{dst}^{\ell}, \mathrm{sta}^{\ell}\right) \\
\operatorname{dst}_{t}^{\ell}(c) & \stackrel{\text { def }}{=} \operatorname{dstL}\left(t, c, \mathrm{ins}^{\ell}\right) \\
\operatorname{sta}_{t}^{\ell}(c) & \stackrel{\text { def }}{=} \operatorname{staL}\left(t, c, \mathrm{brd}^{\ell}, \mathrm{dst}^{\ell}\right) \\
\operatorname{mid}_{t}^{\ell}(c) & \stackrel{\text { def }}{=} \operatorname{midL}\left(t, c, \mathrm{dst}^{\ell}, \mathrm{sta}^{\ell}\right)
\end{aligned}
$$

But Coq cannot guess the decreasing argument. So, instead, we substitute the schemata to obtain only one mutual recursion for brd and ins, and thereafter define the other fields:

Definition 1.7 (Boolean Fields).

$$
\begin{aligned}
& \operatorname{brd}^{0} \stackrel{\text { def }}{=} \operatorname{brd} 0 \\
& \operatorname{brd}^{\ell+1} \stackrel{\text { def }}{=} \operatorname{brdS}\left(\operatorname{brd}^{\ell}, \operatorname{midL}\left(\operatorname{dstL}\left(\operatorname{ins}^{\ell}\right), \operatorname{staL}\left(\operatorname{brd}^{\ell}, \operatorname{dstL}\left(\operatorname{ins}^{\ell}\right)\right)\right)\right) \\
& \text { ins }{ }^{0} \stackrel{\text { def }}{=} \text { ins } 0 \\
& \operatorname{ins}^{\ell+1} \stackrel{\text { def }}{=} \operatorname{insS}\left(\operatorname{ins}^{\ell}, \operatorname{dstL}\left(\operatorname{ins}^{\ell}\right), \operatorname{staL}\left(\operatorname{brd}^{\ell}, \operatorname{dstL}\left(\operatorname{ins}^{\ell}\right)\right)\right) \\
& \mathrm{dst}^{\ell} \stackrel{\text { def }}{=} \mathrm{dstL}\left(\mathrm{ins}^{\ell}\right) \\
& \mathrm{sta}^{\ell} \stackrel{\text { def }}{=} \operatorname{staL}\left(\mathrm{brd}^{\ell}, \mathrm{dst}^{\ell}\right) \\
& \operatorname{mid}^{\ell} \stackrel{\text { def }}{=} \operatorname{midL}\left(\mathrm{dst}^{\ell}, \operatorname{sta}^{\ell}\right) \\
& \text { where } f\left(g_{1}, \ldots, g_{k}\right) \text { denotes the field }(t, c) \mapsto f\left(t, c, g_{1}, \ldots, g_{k}\right) \text {. }
\end{aligned}
$$

In particular, we obtain the equivalence between the respective boolean and proposition fields, and the specification of dst:

Lemma 1.8 (Equivalence Lemma).

$$
\begin{aligned}
\forall \ell t c, \operatorname{Brd}_{t}^{\ell}(c) & \Leftrightarrow \operatorname{brd}_{t}^{\ell}(c)=\text { true } \\
\forall \ell t c, \operatorname{Ins}_{t}^{\ell}(c) & \Leftrightarrow \operatorname{ins}_{t}^{\ell}(c)=\text { true } \\
\forall \ell t c, \operatorname{Sta}_{t}^{\ell}(c) & \Leftrightarrow \operatorname{sta}_{t}^{\ell}(c)=\text { true } \\
\forall \ell t c, \operatorname{Mid}_{t}^{\ell}(c) & \Leftrightarrow \operatorname{mid}_{t}^{\ell}(c)=\text { true }
\end{aligned}
$$

Lemma 1.9 (Distance Field).

$$
\begin{align*}
\operatorname{dst}_{0}^{\ell}(c) & =0 \\
\operatorname{Ins}_{t+1}^{\ell}(c) \Rightarrow \mathrm{dst}_{t+1}^{\ell}(c) & =1+\min \left(\mathrm{dst}_{t}^{\ell}(c-1), \mathrm{dst}_{t}^{\ell}(c+1)\right) \\
\neg \operatorname{Ins}_{t+1}^{\ell}(c) \Rightarrow \mathrm{dst}_{t+1}^{\ell}(c) & =0 \tag{6}
\end{align*}
$$

2 TECHNICAL LEMMAS

The following lemmas are general and are not from our framework of fields :

Lemma 2.1.

$$
\forall n d_{1} d_{2},\left(n=2 d_{1} \vee n=2 d_{1}+1\right) \wedge\left(n=2 d_{2} \vee n=2 d_{2}+1\right) \Rightarrow d_{1}=d_{2}
$$

Proof. Coq ! The proof is made by case on n :

- In this case, n is even.

Because $n=2 d_{1} \vee n=2 d_{1}+1$ and n is even, we have that $n=2 d_{1}$.
Because $n=2 d_{2} \vee n=2 d_{2}+1$ and n is even, we have that $n=2 d_{2}$.
So $2 d_{1}=2 d_{2}$, therefore $d_{1}=d_{2}$.

- In this case, n is odd.

Because $n=2 d_{1} \vee n=2 d_{1}+1$ and n is odd, we have that $n=2 d_{1}+1$.
Because $n=2 d_{2} \vee n=2 d_{2}+1$ and n is odd, we have that $n=2 d_{2}+1$.
So $2 d_{1}+1=2 d_{2}+1$, therefore $d_{1}=d_{2}$.

The following lemmas are from our framework of fields :
Lemma 2.2 (Local Distance).

$$
\forall \ell t c, \operatorname{dst}_{t+1}^{\ell}(c) \leq 1+\min \left(\operatorname{dst}_{t}^{\ell}(c-1), \operatorname{dst}_{t}^{\ell}(c+1)\right)
$$

Proof. Let ℓ, t and c. By case :

- If $\operatorname{Ins}_{t+1}^{\ell}(c)$ then (6) the equality holds, so does the inequality.
- If $\neg \operatorname{Ins}_{t+1}^{\ell}(c)$ then (6) $\mathrm{dst}_{t+1}^{\ell}(c)=0$, so the inequality holds.

Lemma 2.3 (Middle Distance).

$$
\forall \ell t c, \operatorname{Mid}_{t+1}^{\ell}(c) \Rightarrow \operatorname{dst}_{t+1}^{\ell}(c) \geq \max \left(\operatorname{dst}_{t}^{\ell}(c-1), \operatorname{dst}_{t}^{\ell}(c+1)\right)
$$

Proof. Let ℓ, t and c. By using (5), $\operatorname{Mid}_{t+1}^{\ell}(c)$ implies two cases:

$$
\begin{aligned}
& \mathrm{dst}_{t+1}^{\ell}(c)>\max \left(\mathrm{dst}_{t}^{\ell}(c-1), \mathrm{dst}_{t}^{\ell}(c+1)\right) \\
& \mathrm{dst}_{t+1}^{\ell}(c)=\max \left(\mathrm{dst}_{t}^{\ell}(c-1), \mathrm{dst}_{t}^{\ell}(c+1)\right)
\end{aligned}
$$

and the result holds in every cases.

We could use the previous lemma in Coq to simplify the proof of the following:

Lemma 2.4 (Brd and Ins are exclusive).

$$
\forall \ell t c, \operatorname{Brd}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \text { False }
$$

Proof. The proof is made by induction on ℓ :

- If $\ell=0$ then $\operatorname{Brd}_{t}^{\ell}(c)$ implies (2) that $1=c$ or $c=n$, and $\operatorname{Ins}_{t}^{\ell}(c)$ implies (3) that $1<c<n$, hence the contradiction.
- We assume that:

$$
\forall t c, \operatorname{Brd}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \text { False } \quad\left(I H_{\ell}\right)
$$

Let t and c, and we assume that:

$$
\begin{array}{ll}
\operatorname{Brd}_{t}^{\ell+1}(c) \\
\operatorname{Ins}_{t}^{\ell+1}(c) & \left(H_{\mathrm{Brd}}\right) \\
\left(H_{\mathrm{Ins}}\right)
\end{array}
$$

The proof of False is made by case on t :

- If $t=0$ then (3) $\operatorname{Ins}_{t}^{\ell+1}(c)$ is False, and is assumed.
- If $t=t^{\prime}+1, H_{\text {Ins }}$ implies (3) that:

$$
\begin{gathered}
\operatorname{Ins}_{t^{\prime}+1}^{\ell}(c) \\
\operatorname{dst}_{t^{\prime}+1}^{\ell}(c)<\operatorname{dst}_{t^{\prime}}^{\ell}(c-1) \vee \operatorname{dst}_{t^{\prime}+1}^{\ell}(c)<\operatorname{dst}_{t^{\prime}}^{\ell}(c-1)
\end{gathered}
$$

$H_{\text {Brd }}$ implies (2) that $\operatorname{Brd}_{t^{\prime}+1}^{\ell}(c) \vee \operatorname{Mid}_{t^{\prime}+1}^{\ell}(c)$, so the proof is made by case:

* If $\operatorname{Brd}_{t^{\prime}+1}^{\ell}(c)$, because $H_{\mathrm{Ins}} 2$, we have False by using $I H_{\ell}$.
* If $\operatorname{Mid}_{t^{\prime}+1}^{\ell}(c)$, then by lemma 2.3:

$$
\operatorname{dst}_{t^{\prime}+1}^{\ell}(c) \geq \max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right)
$$

therefore $\mathrm{dst}_{t^{\prime}+1}^{\ell}(c) \geq \mathrm{dst}_{t^{\prime}}^{\ell}(c-1)$ and dst $t_{t^{\prime}+1}^{\ell}(c) \geq \mathrm{dst}_{t^{\prime}}^{\ell}(c+$ $1)$, which contradicts $H_{\text {dst }}$.

Lemma 2.5 (Distance of a Border).

$$
\forall \ell t c, \operatorname{Brd}_{t}^{\ell}(c) \Rightarrow \operatorname{dst}_{t}^{\ell}(c)=0
$$

Proof. Assuming that $\operatorname{Brd}_{t}^{\ell}(c)$, by using the lemma 2.4, we have that $\neg \operatorname{Ins}_{t}^{\ell}(c)$. Therefore (6) dst ${ }_{t}^{\ell}(c)=0$.

Lemma 2.6 (Middles have stable neighbours).

$$
\forall \ell t c, \operatorname{Mid}_{t+1}^{\ell}(c) \Rightarrow \operatorname{Sta}_{t}^{\ell}(c-1) \wedge \operatorname{Sta}_{t}^{\ell}(c+1)
$$

Proof. Coq! The result is obtained by hypothesis on the two cases (5) of $\operatorname{Mid}_{t+1}^{\ell}(c)$.

Use the previous lemma (introduced lately during the redaction) to simplify some proofs ?

Lemma 2.7 (A middle is stable).

$$
\forall \ell t c, \operatorname{Mid}_{t}^{\ell}(c) \Rightarrow \operatorname{Sta}_{t}^{\ell}(c)
$$

Proof. Coq ! Let ℓ. The proof is made by case on t :

- If $t=0$, let c. By (5), $\operatorname{Mid}_{0}^{\ell}(c)$ is False, so the implication holds.
- Else, we prove $\operatorname{Sta}_{t}^{\ell}(c)$ by case (5) on the hypothesis $\operatorname{Mid}_{t}^{\ell}(c)$:
- In the first case we assume:

$$
\begin{align*}
& \operatorname{dst}_{t+1}^{\ell}(c)> \max \left(\operatorname{dst}_{t}^{\ell}(c-1), \mathrm{dst}_{t}^{\ell}(c+1)\right) \tag{Hd}\\
& \operatorname{Sta}_{t}^{\ell}(c-1) \tag{HSL}\\
& \operatorname{Sta}_{t}^{\ell}(c+1) \tag{HSR}\\
& H d \text { implies that: } \\
& \operatorname{dst}_{t+1}^{\ell}(c) \geq 1+\max \left(\operatorname{dst}_{t}^{\ell}(c-1), \operatorname{dst}_{t}^{\ell}(c+1)\right) \\
& \geq 1+\operatorname{dst}_{t}^{\ell}(c-1)
\end{align*}
$$

And the lemma 2.2 implies that:

$$
\begin{aligned}
\mathrm{dst}_{t+1}^{\ell}(c) & \leq 1+\min \left(\mathrm{dst}_{t}^{\ell}(c-1), \mathrm{dst}_{t}^{\ell}(c+1)\right) \\
& \leq 1+\operatorname{dst}_{t}^{\ell}(c-1)
\end{aligned}
$$

So dst $t_{t+1}^{\ell}(c)=1+\operatorname{dst}_{t}^{\ell}(c-1)$. But $H S L$, therefore (4) $\operatorname{Sta}_{t}^{\ell}(c)$.

- In the second case, $\operatorname{Sta}_{t}^{\ell}(c)$ is obtained by hypothesis.

Lemma 2.8 (A stable cell with dst $=0$ is a border).

$$
\forall \ell t c, \operatorname{Sta}_{t}^{\ell}(c) \wedge \operatorname{dst}_{t}^{\ell}(c)=0 \Rightarrow \operatorname{Brd}_{t}^{\ell}(c)
$$

Proof. Coq ! Let ℓ. The proof is made by case on t :

- If $t=0$, let c. We assume that $\operatorname{Sta}_{0}^{\ell}(c)$ and $\operatorname{dst}_{0}^{\ell}(c)=0 . \operatorname{Brd}_{0}^{\ell}(c)$ is obtained (4) with the hypothesis $\operatorname{Sta}_{0}^{\ell}(c)$.
- Else, let c. We assume that $\operatorname{Sta}_{t+1}^{\ell}(c)$ and dst ${ }_{t+1}^{\ell}(c)=0$. The proof is made by case (4) on the hypothesis $\mathrm{Sta}_{t+1}^{\ell}(c)$:
- In the first case $\operatorname{Brd}_{t+1}^{\ell}(c)$ is obtained by hypothesis.
- In the second case we have dst $t_{t+1}^{\ell}(c)=1+\operatorname{dst}_{t}^{\ell}(c-1)$, which contradicts dst ${ }_{t+1}^{\ell}(c)=0$.
- In the second case we have $\operatorname{dst}_{t+1}^{\ell}(c)=1+\operatorname{dst}_{t}^{\ell}(c+1)$, which contradicts dst ${ }_{t+1}^{\ell}(c)=0$.

Corollary 2.9 (A non-border Middle has a distance >0).

$$
\forall \ell t c, \neg \operatorname{Brd}_{t}^{\ell}(c) \wedge \operatorname{Mid}_{t}^{\ell}(c) \Rightarrow \operatorname{dst}_{t}^{\ell}(c)>0
$$

Proof. By using the contraposition of the lemma 2.8 on the hypothesis $\neg \operatorname{Brd}_{t}^{\ell}(c)$ we have $\neg \operatorname{Sta}_{t}^{\ell}(c)$ or dst ${ }_{t}^{\ell}(c) \neq 0$.

But by using the lemma 2.7 on the hypothesis $\operatorname{Mid}_{t}^{\ell}(c)$ we have $\operatorname{Sta}_{t}^{\ell}(c)$. So dst ${ }_{t}^{\ell}(c)>0$.

Lemma 2.10 (At layer 0, the cells end up being awaken).

$$
\exists t, \forall c, \operatorname{Inp}_{t}(c)
$$

Proof. By axiom (To do !), there exists at least one general. Therefore, the input field propagates until every cell is awaken. To do properly !

An explicit formula coul be found, using the initial position of the generals.

3 MONOTONICITY

In this section we prove monotonicity properties for the fields, which means that if the property is verified for a given t, then this property is verified for every $t^{\prime} \geq t$.

Lemma 3.1 (Inp is monotone).

$$
\forall \ell t c, \operatorname{Inp}_{t}^{\ell}(c) \Rightarrow \operatorname{Inp}_{t+1}^{\ell}(c)
$$

Proof. Let ℓ, t and c.
The hypothesis $\operatorname{Inp}_{t}^{\ell}(c)$ implies $\operatorname{Inp}_{t+1}^{\ell}(c)$ by using the equation (1).
Lemma 3.2 (Ins monotone implies dst is increasing).

$$
\forall \ell,\left(\forall t c, \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)\right) \Rightarrow\left(\forall t c, \operatorname{dst}_{t}^{\ell}(c) \leq \operatorname{dst}_{t+1}^{\ell}(c)\right)
$$

Proof. Let ℓ, and we assume:

$$
\forall t c, \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c) \quad\left(H_{\text {ins }}\right)
$$

The proof is made by induction on t :

- If $t=0$, then (6) $\mathrm{dst}_{t}^{\ell}(c)=0$, therefore $\mathrm{dst}_{t}^{\ell}(c) \leq \mathrm{dst}_{t+1}^{\ell}(c)$.
- We assume that:

$$
\forall c, \operatorname{dst}_{t}^{\ell}(c) \leq \operatorname{dst}_{t+1}^{\ell}(c)
$$

Let c . We proove by case that $\mathrm{dst}_{t+1}^{\ell}(c) \leq \mathrm{dst}_{t+2}^{\ell}(c)$:

- If $\operatorname{Ins}_{t+2}^{\ell}(c)$ then $(6) \mathrm{dst}_{t+2}^{\ell}(c)=1+\min \left(\mathrm{dst}_{t+1}^{\ell}(c-1), \mathrm{dst}_{t+1}^{\ell}(c+1)\right)$.

But by using $I H_{t}$ we have that dst ${ }_{t}^{\ell}(c-1) \leq \mathrm{dst}_{t+1}^{\ell}(c-1)$ and $\mathrm{dst}_{t}^{\ell}(c+1) \leq \mathrm{dst}_{t+1}^{\ell}(c+1)$, so:

$$
1+\min \left(\operatorname{dst}_{t}^{\ell}(c-1), \operatorname{dst}_{t}^{\ell}(c+1)\right) \leq \mathrm{dst}_{t+2}^{\ell}(c)
$$

Therefore, by using the lemma 2.2 , we have $\mathrm{dst}_{t+1}^{\ell}(c) \leq \mathrm{dst}_{t+2}^{\ell}(c)$.

- If $\neg \operatorname{Ins}_{t+2}^{\ell}(c)$ then (6) dst $t_{t+2}^{\ell}(c)=0$. Moreover, by using the contraposition of $H_{\text {ins }}$ we have $\neg \operatorname{Ins}_{t+1}^{\ell}(c)$, so dst $t_{t+1}^{\ell}(c)=0$ too. Therefore, in any cases, $\mathrm{dst}_{t+1}^{\ell}(c) \leq \mathrm{dst}_{t+2}^{\ell}(c)$.

Lemma 3.3 (Brd and Ins monotone implies a stable dst is constant).

$$
\begin{gathered}
\forall \ell,\left(\forall t c, \operatorname{Brd}_{t}^{\ell}(c) \Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c)\right) \Rightarrow\left(\forall t c, \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)\right) \\
\Rightarrow\left(\forall t c, \operatorname{Sta}_{t}^{\ell}(c) \Rightarrow \operatorname{dst}_{t}^{\ell}(c)=\mathrm{dst}_{t+1}^{\ell}(c)\right)
\end{gathered}
$$

Proof. Let ℓ. We assume that:

$$
\begin{aligned}
\forall t c, \operatorname{Brd}_{t}^{\ell}(c) & \Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c) \\
\forall t c, \operatorname{Ins}_{t}^{\ell}(c) & \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)
\end{aligned}
$$

We prove $\forall t c, \operatorname{Sta}_{t}^{\ell}(c) \Rightarrow \operatorname{dst}_{t}^{\ell}(c)=\mathrm{dst}_{t+1}^{\ell}(c)$ by induction on t :

- If $t=0$ then (4) the hypothesis $\operatorname{Sta}_{0}^{\ell}(c)$ implies $\operatorname{Brd}_{0}^{\ell}(c)$, so according to H_{Brd} we have $\operatorname{Brd}_{1}^{\ell}(c)$ too. Therefore, according to the lemma 2.5, we have dst ${ }_{0}^{\ell}(c)=0=\operatorname{dst}_{1}^{\ell}(c)$.
- We assume the induction hypothesis:

$$
\forall c, \operatorname{Sta}_{t}^{\ell}(c) \Rightarrow \mathrm{dst}_{t}^{\ell}(c)=\mathrm{dst}_{t+1}^{\ell}(c)
$$

Let c. We assume the hypothesis:

$$
\operatorname{Sta}_{t+1}^{\ell}(c) \quad\left(H_{\mathrm{Sta}}\right)
$$

We prove $\mathrm{dst}_{t+1}^{\ell}(c)=\mathrm{dst}_{t+2}^{\ell}(c)$ by case (4) on H_{Sta} :

- If $\operatorname{Brd}_{t+1}^{\ell}(c)$ then according to H_{Brd} we have $\operatorname{Brd}_{t+2}^{\ell}(c)$ too. Therefore, according to the lemma 2.5, we have dst ${ }_{t+1}^{\ell}(c)=0=$ $\mathrm{dst}_{t+2}^{\ell}(c)$.
- In that case, we have:

$$
\begin{gathered}
\mathrm{dst}_{t+1}^{\ell}(c)=1+\operatorname{dst}_{t}^{\ell}(c-1) \\
\operatorname{Sta}_{t}^{\ell}(c-1)
\end{gathered}
$$

Firstly, by using $H_{S t a} 2$ and the induction hypothesis $I H_{t}$ we have $\mathrm{dst}_{t}^{\ell}(c-1)=\mathrm{dst}_{t+1}^{\ell}(c-1)$, so by using H_{dst}, we have :

$$
\mathrm{dst}_{t+1}^{\ell}(c)=1+\mathrm{dst}_{t}^{\ell}(c-1)=1+\mathrm{dst}_{t+1}^{\ell}(c-1)
$$

Moreover, by using the lemma 2.2, we have:

$$
\begin{aligned}
\mathrm{dst}_{t+2}^{\ell}(c) & \leq 1+\min \left(\mathrm{dst}_{t+1}^{\ell}(c-1), \mathrm{dst}_{t+1}^{\ell}(c+1)\right) \\
& \leq 1+\mathrm{dst}_{t+1}^{\ell}(c-1) \\
& \leq \mathrm{dst}_{t+1}^{\ell}(c)
\end{aligned}
$$

Secondly, by using $H_{\text {Ins }}$ and the lemma 3.2:

$$
\operatorname{dst}_{t+1}^{\ell}(c) \leq \operatorname{dst}_{t+2}^{\ell}(c)
$$

Therefore, we proved the equality.

- If dst $t_{t+1}^{\ell}(c)=1+\mathrm{dst}_{t}^{\ell}(c+1)$ and $\operatorname{Sta}_{t}^{\ell}(c+1)$, the proof is similar to the previous case.

Until this point, the proofs have been successfully implemented in Coq, except for the three technical lemmas with the "Coq !" mark.

Lemma 3.4 (Brd and Ins monotone implies Sta monotone).

$$
\begin{aligned}
\forall \ell,\left(\forall t c, \operatorname{Brd}_{t}^{\ell}(c)\right. & \left.\Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c)\right) \Rightarrow\left(\forall t c, \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)\right) \\
& \Rightarrow\left(\forall t c, \operatorname{Sta}_{t}^{\ell}(c) \Rightarrow \operatorname{Sta}_{t+1}^{\ell}(c)\right)
\end{aligned}
$$

Proof. Let ℓ. We assume that:

$$
\begin{aligned}
\forall t c, \operatorname{Brd}_{t}^{\ell}(c) & \Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c) \\
\forall t c, \operatorname{Ins}_{t}^{\ell}(c) & \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)
\end{aligned}
$$

We prove $\forall t c, \operatorname{Sta}_{t}^{\ell}(c) \Rightarrow \operatorname{Sta}_{t+1}^{\ell}(c)$ by induction on t :

- If $t=0$ then (4) the hypothesis $\operatorname{Sta}_{0}^{\ell}(c)$ implies $\operatorname{Brd}_{0}^{\ell}(c)$, so according to H_{Brd} we have $\operatorname{Brd}_{1}^{\ell}(c)$ too. Therefore, we have (4) the first case of $\mathrm{Sta}_{1}^{\ell}(c)$.
- We assume the induction hypothesis:

$$
\begin{equation*}
\forall c, \operatorname{Sta}_{t}^{\ell}(c) \Rightarrow \operatorname{Sta}_{t+1}^{\ell}(c) \tag{t}
\end{equation*}
$$

Let c. We assume the hypothesis:

$$
\operatorname{Sta}_{t+1}^{\ell}(c)
$$

We prove $\mathrm{Sta}_{t+2}^{\ell}(c)$ by case (4) on $H_{\text {Sta }}$:

- If $\operatorname{Brd}_{t+1}^{\ell}(c)$ then according to H_{Brd} we have $\operatorname{Brd}_{t+2}^{\ell}(c)$ too. Therefore, we have (4) the first case of $\mathrm{Sta}_{t+2}^{\ell}(c)$.
- In that case, we have:

$$
\begin{gathered}
\mathrm{dst}_{t+1}^{\ell}(c)=1+\mathrm{dst}_{t}^{\ell}(c-1) \\
\operatorname{Sta}_{t}^{\ell}(c-1)
\end{gathered}
$$

By using $H_{\mathrm{Brd}}, H_{\mathrm{Ins}}$ and the lemma 3.3, $H_{\mathrm{Sta}} 2$ implies that:

$$
\begin{equation*}
\operatorname{dst}_{t}^{\ell}(c-1)=\operatorname{dst}_{t+1}^{\ell}(c-1) \tag{H}
\end{equation*}
$$

Firstly, by using the lemma 2.2 then H then $H_{\text {dst }}$, we have:

$$
\begin{aligned}
\mathrm{dst}_{t+2}^{\ell}(c) & \leq 1+\min \left(\mathrm{dst}_{t+1}^{\ell}(c-1), \mathrm{dst}_{t+1}^{\ell}(c+1)\right) \\
& \leq 1+\operatorname{dst}_{t+1}^{\ell}(c-1) \\
& =1+\operatorname{dst}_{t}^{\ell}(c-1) \\
& =\operatorname{dst}_{t+1}^{\ell}(c)
\end{aligned}
$$

Secondly, by using $H_{\text {Ins }}$ and the lemma 3.2, we have:

$$
\mathrm{dst}_{t+1}^{\ell}(c) \leq \mathrm{dst}_{t+2}^{\ell}(c)
$$

Therefore dst $t_{t+1}^{\ell}(c)=\operatorname{dst}_{t+2}^{\ell}(c)$. So, by using H_{dst} then H :

$$
\begin{aligned}
\operatorname{dst}_{t+2}^{\ell}(c) & =\operatorname{dst}_{t+1}^{\ell}(c) \\
& =1+\operatorname{dst}_{t}^{\ell}(c-1) \\
& =1+\operatorname{dst}_{t+1}^{\ell}(c-1)
\end{aligned}
$$

Moreover, by using $H_{S t a} 2$ and the induction hypothesis $I H_{t}$ we have $\operatorname{Sta}_{t+1}^{\ell}(c-1)$. Therefore (4) we proved $\operatorname{Sta}_{t+2}^{\ell}(c)$.

- If dst ${ }_{t+1}^{\ell}(c)=1+\mathrm{dst}_{t}^{\ell}(c+1)$ and $\operatorname{Sta}_{t}^{\ell}(c+1)$, the proof is similar to the previous case.

Lemma 3.5 (Brd and Ins monotone implies Mid monotone).

$$
\begin{aligned}
& \forall \ell,\left(\forall t c, \operatorname{Brd}_{t}^{\ell}(c)\right.\left.\Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c)\right) \Rightarrow\left(\forall t c, \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)\right) \\
& \Rightarrow\left(\forall t c, \operatorname{Mid}_{t}^{\ell}(c) \Rightarrow \operatorname{Mid}_{t+1}^{\ell}(c)\right)
\end{aligned}
$$

Proof. Let ℓ. We assume that:

$$
\begin{aligned}
\forall t c, \operatorname{Brd}_{t}^{\ell}(c) & \Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c) \\
\forall t c, \operatorname{Ins}_{t}^{\ell}(c) & \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)
\end{aligned}
$$

We prove $\forall t c, \operatorname{Mid}_{t}^{\ell}(c) \Rightarrow \operatorname{Mid}_{t+1}^{\ell}(c)$ by case on t :

- If $t=0$ then (5) $\operatorname{Mid}_{t}^{\ell}(c)$ is False, so the implication holds.
- If $t=t^{\prime}+1$, let c, and we assume the hypothesis:

$$
\operatorname{Mid}_{t^{\prime}+1}^{\ell}(c)
$$

$$
\left(H_{\mathrm{Mid}}\right)
$$

We prove $\operatorname{Mid}_{t^{\prime}+2}^{\ell}(c)$ by case (5) on $H_{\text {Mid }}$:

- In the first case, we have:

$$
\begin{array}{rr}
\operatorname{dst}_{t^{\prime}+1}^{\ell}(c)>\max \left(\mathrm{dst}_{t^{\prime}}^{\ell}(c-1), \mathrm{dst}_{t^{\prime}}^{\ell}(c+1)\right) & \left(H_{\mathrm{dst}}\right) \\
\operatorname{Sta}_{t^{\prime}}^{\ell}(c-1) & \left(H_{\mathrm{Sta} L)}\right. \\
\operatorname{Sta}_{t^{\prime}}^{\ell}(c+1) & \left(H_{\mathrm{Sta}} R\right)
\end{array}
$$

By using $H_{\mathrm{Brd}}, H_{\text {Ins }}$ and the lemma 3.3:

* $H_{\mathrm{Sta}} L$ implies that dst $t_{t^{\prime}}^{\ell}(c-1)=\mathrm{dst}_{t^{\prime}+1}^{\ell}(c-1)$
* $H_{\text {Sta }} R$ implies that dst $t_{t^{\prime}}^{\ell}(c+1)=\mathrm{dst}_{t^{\prime}+1}^{\ell}(c+1)$

Therefore, we have:

$$
\max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right)=\max \left(\operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1), \mathrm{dst}_{t^{\prime}+1}^{\ell}(c+1)\right)
$$

So, by using $H_{\text {Ins }}$ and the lemma 3.2, then $H_{\text {dst }}$, then $H_{\text {max }}$, we have:

$$
\begin{aligned}
\operatorname{dst}_{t^{\prime}+2}^{\ell}(c) & \geq \operatorname{dst}_{t^{\prime}+1}^{\ell}(c) \\
& >\max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right) \\
& =\max \left(\operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}+1}^{\ell}(c+1)\right)
\end{aligned}
$$

Moreover, by using $H_{\mathrm{Brd}}, H_{\mathrm{Ins}}$ and the lemma 3.4:

* $H_{\mathrm{Sta}} L$ implies that $\operatorname{Sta}_{t^{\prime}+1}^{\ell}(c-1)$
* $H_{\mathrm{Sta}} R$ implies that $\operatorname{Sta}_{t^{\prime}+1}^{\ell}(c+1)$

Therefore, we have the left part of $\operatorname{Mid}_{t^{\prime}+2}^{\ell}(c)$.

- In the second case, we have:

$$
\begin{array}{cc}
\operatorname{dst}_{t^{\prime}+1}^{\ell}(c)=\max \left(\mathrm{dst}_{t^{\prime}}^{\ell}(c-1), \mathrm{dst}_{t^{\prime}}^{\ell}(c+1)\right) & \left(H_{\mathrm{dst}}\right) \\
\operatorname{Sta}_{t^{\prime}}^{\ell}(c-1) & \left(H_{\mathrm{Sta}} L\right) \\
\operatorname{Sta}_{t^{\prime}}^{\ell}(c) & \left(H_{\mathrm{Sta}} C\right) \\
\operatorname{Sta}_{t^{\prime}}^{\ell}(c+1) & \left(H_{\mathrm{Sta}} R\right)
\end{array}
$$

By using $H_{\mathrm{Brd}}, H_{\text {Ins }}$ and the lemma 3.4:

* $H_{\text {Sta }} L$ implies that $\operatorname{Sta}_{t^{\prime}+1}^{\ell}(c-1)$
* $H_{\mathrm{Sta}} C$ implies that $\mathrm{Sta}_{t^{\prime}+1}^{\ell}(c)$
* $H_{\text {Sta }} R$ implies that $\operatorname{Sta}_{t^{\prime}+1}^{\ell}(c+1)$

Therefore, to obtain the right part of $\operatorname{Mid}_{t^{\prime}+2}^{\ell}(c)$, it remains only to prove that $\mathrm{dst}_{t^{\prime}+2}^{\ell}(c)=\max \left(\mathrm{dst}_{t^{\prime}+1}^{\ell}(c-1), \mathrm{dst}_{t^{\prime}+1}^{\ell}(c+1)\right)$.
By using $H_{\mathrm{Brd}}, H_{\text {Ins }}$ and the lemma 3.3, $\operatorname{Sta}_{t^{\prime}+1}^{\ell}(c)$ implies that:

$$
\mathrm{dst}_{t^{\prime}+1}^{\ell}(c)=\mathrm{dst}_{t^{\prime}+2}^{\ell}(c) \quad\left(H_{\mathrm{dst}} 2\right)
$$

By using $H_{\text {Brd }}$, $H_{\text {Ins }}$ and the lemma 3.3:

* $H_{\mathrm{Sta}} L$ implies that dst $t_{t^{\prime}}^{\ell}(c-1)=\mathrm{dst}_{t^{\prime}+1}^{\ell}(c-1)$
* $H_{\mathrm{Sta}} R$ implies that dst $t_{t^{\prime}}^{\ell}(c+1)=\mathrm{dst}_{t^{\prime}+1}^{\ell}(c+1)$

Therefore, we have:

$$
\max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right)=\max \left(\operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}+1}^{\ell}(c+1)\right)
$$

So, by using $H_{\mathrm{dst}} 2$, then H_{dst}, then $H_{\max }$, we have:

$$
\begin{aligned}
\operatorname{dst}_{t^{\prime}+2}^{\ell}(c) & =\operatorname{dst}_{t^{\prime}+1}^{\ell}(c) \\
& =\max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right) \\
& =\max \left(\operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}+1}^{\ell}(c+1)\right)
\end{aligned}
$$

Therefore, we have the right part of $\operatorname{Mid}_{t^{\prime}+2}^{\ell}(c)$.

Lemma 3.6 (Brd^{ℓ} and Ins^{ℓ} monotone implies $\mathrm{Brd}^{\ell+1}$ monotone).

$$
\begin{gathered}
\forall \ell,\left(\forall t c, \operatorname{Brd}_{t}^{\ell}(c) \Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c)\right) \Rightarrow\left(\forall t c, \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)\right) \\
\Rightarrow\left(\forall t c, \operatorname{Brd}_{t}^{\ell+1}(c) \Rightarrow \operatorname{Brd}_{t+1}^{\ell+1}(c)\right)
\end{gathered}
$$

Proof. Let ℓ. We assume that:

$$
\begin{aligned}
\forall t c, \operatorname{Brd}_{t}^{\ell}(c) & \Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c) \\
\forall t c, \operatorname{Ins}_{t}^{\ell}(c) & \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)
\end{aligned}
$$

Let t and c. We prove $\operatorname{Brd}_{t+1}^{\ell+1}(c)$ by case (2) on the hypothesis $\operatorname{Brd}_{t}^{\ell+1}(c)$:

- In the first case, we have $\operatorname{Brd}_{t}^{\ell}(c)$, so by using H_{Brd} we have $\operatorname{Brd}_{t+1}^{\ell}(c)$. Therefore (2), we proved the left part of $\operatorname{Brd}_{t+1}^{\ell+1}(c)$.
- In the second case, we have $\operatorname{Mid}_{t}^{\ell}(c)$.

So, by using $H_{\mathrm{Brd}}, H_{\text {Ins }}$ and the lemma 3.5 we have $\operatorname{Mid}_{t+1}^{\ell}(c)$.
Therefore (2), we proved the right part of $\operatorname{Brd}_{t+1}^{\ell+1}(c)$.

Lemma 3.7 (Brd^{ℓ} and Ins^{ℓ} monotone implies Ins ${ }^{\ell+1}$ monotone).

$$
\begin{aligned}
\forall \ell,\left(\forall t c, \operatorname{Brd}_{t}^{\ell}(c)\right. & \left.\Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c)\right) \Rightarrow\left(\forall t c, \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)\right) \\
\Rightarrow & \left(\forall t c, \operatorname{Ins}_{t}^{\ell+1}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell+1}(c)\right)
\end{aligned}
$$

Proof. Let ℓ. We assume that:

$$
\begin{aligned}
\forall t c, \operatorname{Brd}_{t}^{\ell}(c) & \Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c) \\
\forall t c, \operatorname{Ins}_{t}^{\ell}(c) & \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)
\end{aligned}
$$

We prove $\operatorname{Ins}_{t}^{\ell+1}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell+1}(c)$ by case on t :

- If $t=0$ then (3) $\operatorname{Ins}_{t}^{\ell+1}(c)$ is False, so the implication holds.
- If $t=t^{\prime}+1$, let c. The hypothesis $\operatorname{Ins}_{t^{\prime}+1}^{\ell+1}(c)$ implies (3):

$$
\begin{array}{cc}
\operatorname{Ins}_{t^{\prime}+1}^{\ell}(c) & \left(H_{\mathrm{Ins}} 2\right) \\
\operatorname{Sta}_{t^{\prime}+1}^{\ell}(c) & \left(H_{\mathrm{Sta}}\right) \\
\operatorname{dst}_{t^{\prime}+1}^{\ell}(c)<\mathrm{dst}_{t^{\prime}}^{\ell}(c-1) \vee \operatorname{dst}_{t^{\prime}+1}^{\ell}(c)<\operatorname{dst}_{t^{\prime}}^{\ell}(c-1) & \left(H_{\mathrm{dst}}\right)
\end{array}
$$

By using $H_{\text {Ins }}, H_{\text {Ins }} 2$ implies that $\operatorname{Ins}_{t^{\prime}+2}^{\ell}(c)$.
Moreover, by using $H_{\mathrm{Brd}}, H_{\mathrm{Ins}}$ and the lemma 3.4, $H_{\text {Sta }}$ implies that Sta $_{t^{\prime}+2}^{\ell}(c)$.
Therefore, to obtain $\operatorname{Ins}_{t^{\prime}+2}^{\ell+1}(c)$, it remains only to prove that dst $t_{t^{\prime}+2}^{\ell}(c)<$ $\mathrm{dst}_{t^{\prime}+1}^{\ell}(c-1) \vee \mathrm{dst}_{t^{\prime}+2}^{\ell}(c)<\mathrm{dst}_{t^{\prime}+1}^{\ell}(c-1)$.
Notice that by using $H_{\mathrm{Brd}}, H_{\mathrm{Ins}}$ and the lemma 3.3, H_{Sta} implies that:

$$
\begin{equation*}
\operatorname{dst}_{t^{\prime}+1}^{\ell}(c)=\operatorname{dst}_{t^{\prime}+2}^{\ell}(c) \tag{H}
\end{equation*}
$$

We prove $\operatorname{dst}_{t^{\prime}+2}^{\ell}(c)<\operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1) \vee \operatorname{dst}_{t^{\prime}+2}^{\ell}(c)<\operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1)$ by case on $H_{\text {dst }}$:

- In the first case, we have dst $t_{t^{\prime}+1}^{\ell}(c)<\mathrm{dst}_{t^{\prime}}^{\ell}(c-1)$.

So, by using H, then the case hypothesis, then $H_{\text {Ins }}$ and the lemma 3.2, we have:

$$
\begin{aligned}
\mathrm{dst}_{t^{\prime}+2}^{\ell}(c) & =\operatorname{dst}_{t^{\prime}+1}^{\ell}(c) \\
& <\operatorname{dst}_{t^{\prime}}^{\ell}(c-1) \\
& \leq \operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1)
\end{aligned}
$$

Therefore, we proved the left part of dst $t_{t^{\prime}+2}^{\ell}(c)<\mathrm{dst}_{t^{\prime}+1}^{\ell}(c-$ 1) $\vee \operatorname{dst}_{t^{\prime}+2}^{\ell}(c)<\operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1)$.

- The case $\operatorname{dst}_{t^{\prime}+1}^{\ell}(c)<\operatorname{dst}_{t^{\prime}}^{\ell}(c+1)$ is similar, and proves the right part of $\mathrm{dst}_{t^{\prime}+2}^{\ell}(c)<\mathrm{dst}_{t^{\prime}+1}^{\ell}(c-1) \vee \mathrm{dst}_{t^{\prime}+2}^{\ell}(c)<\mathrm{dst}_{t^{\prime}+1}^{\ell}(c-1)$.

Proposition 3.8 (Brd and Ins are monotone).

$$
\forall \ell,\left(\forall t c, \operatorname{Brd}_{t}^{\ell}(c) \Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c)\right) \wedge\left(\forall t c, \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)\right)
$$

Proof. The proof is made by induction on ℓ :

- If $\ell=0$, we prove the two parts separately:
- Let t and c. The hypothesis $\operatorname{Brd}_{t}^{0}(c)$ implies (2) that $\operatorname{Inp}_{t}(c)$ and $1=c \vee c=n$.
So, by using the lemma 3.1, we have $\operatorname{Inp}_{t+1}(c)$ and $1=c \vee c=n$. Therefore (2) we proved that $\operatorname{Brd}_{t+1}^{0}(c)$.
- Let t and c. The hypothesis $\operatorname{Ins}_{t}^{0}(c)$ implies (3) that $\operatorname{Inp}_{t}(c)$ and $1<c<n$.
So, by using the lemma 3.1, we have $\operatorname{Inp}_{t+1}(c)$ and $1<c<n$.
Therefore (3) we proved that $\operatorname{Ins}_{t+1}^{0}(c)$.
- We assume the induction hypothesis:

$$
\begin{aligned}
\forall t c, \operatorname{Brd}_{t}^{\ell}(c) & \Rightarrow \operatorname{Brd}_{t+1}^{\ell}(c) \\
\forall t c, \operatorname{Ins}_{t}^{\ell}(c) & \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)
\end{aligned}
$$

By using $I H_{\mathrm{Brd}}^{\ell}, I H_{\mathrm{Ins}}^{\ell}$ and the lemma 3.6, we have:

$$
\forall t c, \operatorname{Brd}_{t}^{\ell+1}(c) \Rightarrow \operatorname{Brd}_{t+1}^{\ell+1}(c)
$$

By using $I H_{\mathrm{Brd}}^{\ell}, I H_{\mathrm{Ins}}^{\ell}$ and the lemma 3.7, we have:

$$
\forall t c, \operatorname{Ins}_{t}^{\ell+1}(c) \Rightarrow \operatorname{Ins}_{t+1}^{\ell+1}(c)
$$

Therefore, we proved the induction step.

Corollary 3.9 (Brd is monotone).

$$
\forall \ell t c, \operatorname{Brd}_{t}^{\ell}(c) \Rightarrow\left(\forall t^{\prime}, t^{\prime} \geq t \Rightarrow \operatorname{Brd}_{t^{\prime}}^{\ell}(c)\right)
$$

Proof. Let ℓ, t and c. We assume the hypothesis $\operatorname{Brd}_{t}^{\ell}(c)$.
Let t^{\prime}. We prove $\operatorname{Brd}_{t^{\prime}}^{\ell}(c)$ by case on the hypothesis $t^{\prime} \geq t$:

- If $t^{\prime}=t$ then $\operatorname{Brd}_{t^{\prime}}^{\ell}(c)$ by hypothesis.
- If $t^{\prime}=t^{\prime \prime}+1$ with $t^{\prime \prime} \geq t$ such that $\operatorname{Brd}_{t^{\prime \prime}}^{\ell}(c)$, then by using the left part of the proposition 3.8 we have $\operatorname{Brd}_{t^{\prime \prime}+1}^{\ell}(c)$. Therefore $\operatorname{Brd}_{t^{\prime}}^{\ell}(c)$.

Corollary 3.10 (Ins is monotone).

$$
\forall \ell t c, \operatorname{Ins}_{t}^{\ell}(c) \Rightarrow\left(\forall t^{\prime}, t^{\prime} \geq t \Rightarrow \operatorname{Ins}_{t^{\prime}}^{\ell}(c)\right)
$$

Proof. The proof is similar to the previous one, and uses the right part of the proposition 3.8.

Corollary 3.11 (Sta is monotone).

$$
\forall \ell t c, \operatorname{Sta}_{t}^{\ell}(c) \Rightarrow\left(\forall t^{\prime}, t^{\prime} \geq t \Rightarrow \operatorname{Sta}_{t^{\prime}}^{\ell}(c)\right)
$$

Proof. Let ℓ, t and c. We assume the hypothesis $\operatorname{Sta}_{t}^{\ell}(c)$.
Let t^{\prime}. We prove $\operatorname{Sta}_{t^{\prime}}^{\ell}(c)$ by case on the hypothesis $t^{\prime} \geq t$:

- If $t^{\prime}=t$ then $\operatorname{Sta}_{t^{\prime}}^{\ell}(c)$ by hypothesis.
- If $t^{\prime}=t^{\prime \prime}+1$ with $t^{\prime \prime} \geq t$ such that $\operatorname{Sta}_{t^{\prime \prime}}^{\ell}(c)$, then by using both parts of the proposition 3.8 and the lemma 3.4 we have $\operatorname{Sta}_{t^{\prime \prime}+1}^{\ell}(c)$.
Therefore $\operatorname{Sta}_{t^{\prime}}^{\ell}(c)$.

Corollary $\mathbf{3 . 1 2}$ (Mid is monotone).

$$
\forall \ell t c, \operatorname{Mid}_{t}^{\ell}(c) \Rightarrow\left(\forall t^{\prime}, t^{\prime} \geq t \Rightarrow \operatorname{Mid}_{t^{\prime}}^{\ell}(c)\right)
$$

Proof. The proof is similar to the previous one, and uses both parts of the proposition 3.8 and the lemma 3.5.

Corollary 3.13 (dst is increasing).

$$
\forall \ell t c t^{\prime}, t^{\prime} \geq t \Rightarrow \operatorname{dst}_{t^{\prime}}^{\ell}(c) \geq \operatorname{dst}_{t}^{\ell}(c)
$$

Proof. Let ℓ, t, c and t^{\prime}.
We prove $\mathrm{dst}_{t^{\prime}}^{\ell}(c) \geq \mathrm{dst}_{t}^{\ell}(c)$ by case on the hypothesis $t^{\prime} \geq t$:

- If $t^{\prime}=t$ then $\operatorname{dst}_{t^{\prime}}^{\ell}(c)=\operatorname{dst}_{t}^{\ell}(c)$, therefore $\operatorname{dst}_{t^{\prime}}^{\ell}(c) \geq \mathrm{dst}_{t}^{\ell}(c)$.
- In that case $t^{\prime}=t^{\prime \prime}+1$ with $t^{\prime \prime} \geq t$ such that dst $t_{t^{\prime \prime}}^{\ell}(c) \geq \mathrm{dst}_{t}^{\ell}(c)$.

Therefore, by using the right part of the proposition 3.8 and the lemma 3.2 , then the hypothesis, we have:

$$
\begin{aligned}
\operatorname{dst}_{t^{\prime}}^{\ell}(c) & =\operatorname{dst}_{t^{\prime \prime}}^{\ell}(c) \\
& \geq \operatorname{dst}_{t^{\prime \prime}}^{\ell \prime}(c) \\
& \geq \operatorname{dst}_{t}^{\ell}(c)
\end{aligned}
$$

Corollary $\mathbf{3 . 1 4}$ (A stable dst is constant).

$$
\forall \ell t c, \operatorname{Sta}_{t}^{\ell}(c) \Rightarrow\left(\forall t^{\prime}, t^{\prime} \geq t \Rightarrow \operatorname{dst}_{t^{\prime}}^{\ell}(c)=\mathrm{dst}_{t}^{\ell}(c)\right)
$$

Proof. Let ℓ, t and c. We assume the hypothesis $\operatorname{Sta}_{t}^{\ell}(c)$.
Let t^{\prime}. We prove $\operatorname{Brd}_{t}^{\ell}(c)$ by case on the hypothesis $t^{\prime} \geq t$:

- If $t^{\prime}=t$ then $\mathrm{dst}_{t^{\prime}}^{\ell}(c)=\mathrm{dst}_{t}^{\ell}(c)$.
- In that case $t^{\prime}=t^{\prime \prime}+1$ with $t^{\prime \prime} \geq t$ such that $\operatorname{dst}_{t^{\prime \prime}}^{\ell}(c)=\operatorname{dst}_{t}^{\ell}(c)$.

By using the hypotheses $\operatorname{Sta}_{t}^{\ell}(c)$ and $t^{\prime \prime} \geq t$, and the lemma 3.11, we have $\operatorname{Sta}_{t^{\prime \prime}}^{\ell}(c)$.
So, by using both parts of the proposition 3.8 and the lemma 3.3 we have dst $t_{t^{\prime \prime}}^{\ell}(c)=\operatorname{dst}_{t^{\prime \prime}+1}^{\ell}(c)$. Therefore:

$$
\begin{aligned}
\mathrm{dst}_{t^{\prime}}^{\ell}(c) & =\operatorname{dst}_{t^{\prime \prime}+1}^{\ell}(c) \\
& =\operatorname{dst}_{t^{\prime \prime}}^{\ell}(c) \\
& =\operatorname{dst}_{t}^{\ell}(c)
\end{aligned}
$$

4 LIGHT CONES

The condition $b_{1}+2 \leq b_{2}$ ensures not only that $b_{1}<b_{2}$, but also that there is a cell between them, because boundaries between light cones are not light cones themselves. This excludes the regions of the final layer to be called light cones, so the results of this section are only for the phase transition.

The choice to exclude the final regions can be justified by the fact that this is the first time the region alone cannot determine the middle, because a middle needs 3 cells to appear and not only 2 .

Insert pictures to justify the last condition and the name "light cone".
Definition 4.1 (Light Cones).

$$
\begin{array}{r}
\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right) \stackrel{\text { def }}{=} b_{1}+2 \leq b_{2} \wedge \operatorname{Brd}_{t}^{\ell}\left(b_{1}\right) \wedge \operatorname{Brd}_{t}^{\ell}\left(b_{2}\right) \\
\wedge\left(\forall c, b_{1}<c<b_{2} \Rightarrow \operatorname{Ins}_{t+1}^{\ell}(c)\right) \tag{7}
\end{array}
$$

Corollary 4.2 (Light Cone at layer 0).

$$
\exists t, \mathrm{LC}_{t}^{0}(1, n)
$$

Proof. Firstly, by axiom (To do !) $n>2$.
Secondly, by using the lemma 2.10 there exists t such that for every cell c, $\operatorname{Inp}_{t}(c)$. So:

- We have (2) that $\operatorname{Brd}_{t}^{0}(1)$ and $\operatorname{Brd}_{t}^{0}(n)$
- We have (3) for every $1<c<n$ that $\operatorname{Ins}_{t}^{0}(c)$. So, by using the corollary 3.10, for every $1<c<n$ we have that $\operatorname{Ins}_{t+1}^{0}(c)$.

Therefore (7) $\mathrm{LC}_{t}^{0}(1, n)$.
In the following, $\frac{a}{2}$ will denote the floor function of the half : the half of a if a is even, and the half of $a-1$ if a is odd.

Proposition 4.3 (Running of a Light Cone).

$$
\begin{gathered}
\forall \ell t b_{1} b_{2}, \mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right) \Rightarrow \forall 0 \leq d \leq \frac{b_{2}-b_{1}}{2} \\
\mathrm{dst}_{t+d}^{\ell}\left(b_{1}+d\right)=d \wedge \operatorname{Sta}_{t+d}^{\ell}\left(b_{1}+d\right) \\
\wedge \mathrm{dst}_{t+d}^{\ell}\left(b_{2}-d\right)=d \wedge \operatorname{Sta}_{t+d}^{\ell}\left(b_{2}-d\right) \\
\wedge\left(\forall b_{1}+d \leq c \leq b_{2}-d, \operatorname{dst}_{t+d}^{\ell}(c) \geq d\right)
\end{gathered}
$$

Proof. Let ℓ, b_{1}, b_{2} and t. We assume that $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$.
The proof is made by induction on d :

- In this case, $d=0$.

Because $\operatorname{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$, we have that $\operatorname{Brd}_{t}^{\ell}\left(b_{1}\right)$ and $\operatorname{Brd}_{t}^{\ell}\left(b_{2}\right)$. So, by using the lemma 2.5 we have that dst $t_{t}^{\ell}\left(b_{1}\right)=0$ and dst $t_{t}^{\ell}\left(b_{2}\right)=0$, and by definition (4) we have that $\operatorname{Sta}_{t}^{\ell}\left(b_{1}\right)$ and $\operatorname{Sta}_{t}^{\ell}\left(b_{2}\right)$.
Moreover, for every $b_{1} \leq c \leq b_{2}$ we have dst ${ }_{t}^{\ell}(c) \geq 0$ because dst is an integer field.

- We assume that $d+1 \leq \frac{b_{2}-b_{1}}{2}$. So $d \leq \frac{b_{2}-b_{1}}{2}$ too, and we have the induction hypothesis:

$$
\begin{gathered}
\mathrm{dst}_{t+d}^{\ell}\left(b_{1}+d\right)=d \wedge \operatorname{Sta}_{t+d}^{\ell}\left(b_{1}+d\right) \\
\wedge \mathrm{dst}_{t+d}^{\ell}\left(b_{2}-d\right)=d \wedge \operatorname{Sta}_{t+d}^{\ell}\left(b_{2}-d\right) \\
\wedge\left(\forall b_{1}+d \leq c \leq b_{2}-d, \operatorname{dst}_{t+d}^{\ell}(c) \geq d\right)
\end{gathered}
$$

Firstly, we prove that for every $b_{1}+(d+1) \leq c \leq b_{2}-(d+1)$, we have :

$$
\mathrm{dst}_{t+(d+1)}^{\ell}(c)=1+\min \left(\mathrm{dst}_{t+d}^{\ell}(c-1), \mathrm{dst}_{t+d}^{\ell}(c+1)\right)
$$

Indeed, if $b_{1}+(d+1) \leq c \leq b_{2}-(d+1)$ then by transitivity we have $b_{1}<$ $c<b_{2}$. So, because $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$ we have $\operatorname{Ins}_{t+1}^{\ell}(c)$. So, by monotonicity (lemma 3.10) we have $\operatorname{Ins}_{t+(d+1)}^{\ell}(c)$. Therefore, by using the equation (6), we have that dst $t_{t+(d+1)}^{\ell}(c)=1+\min \left(\operatorname{dst}_{t+d}^{\ell}(c-1), \operatorname{dst}_{t+d}^{\ell}(c+1)\right)$.

The proof is made by case on c :

- In that case, $c=b_{1}+(d+1)$.

Because $d+1 \leq \frac{b_{2}-b_{1}}{2}$, we have $2 d+2 \leq b_{2}-b_{1}$, so $b_{1}+d+2 \leq b_{2}-d$. So $b_{1}+d \leq b_{1}+d+2 \leq b_{2}-d$, and by using the induction hypothesis we have $\mathrm{dst}_{t+d}^{\ell}\left(b_{1}+d+2\right) \geq d$.
Moreover, by using the induction hypothesis, we have dst $t_{t+d}^{\ell}\left(b_{1}+d\right)=$ d, so dst ${ }_{t+d}^{\ell}\left(b_{1}+d+2\right) \geq \mathrm{dst}_{t+d}^{\ell}\left(b_{1}+d\right)$.
By using H_{c} with $c=b_{1}+d+1$, we have :

$$
\begin{aligned}
\mathrm{dst}_{t+(d+1)}^{\ell}\left(b_{1}+d+1\right) & =1+\min \left(\mathrm{dst}_{t+d}^{\ell}\left(b_{1}+d\right), \mathrm{dst}_{t+d}^{\ell}\left(b_{1}+d+2\right)\right) \\
& =1+\mathrm{dst}_{t+d}^{\ell}\left(b_{1}+d\right) \\
& =1+d
\end{aligned}
$$

Moreover, because dst $t_{t+(d+1)}^{\ell}\left(b_{1}+d+1\right)=1+\operatorname{dst}_{t+d}^{\ell}\left(b_{1}+d\right)$ and by induction hypothesis $\operatorname{Sta}_{t+d}^{\ell}\left(b_{1}+d\right)$, we have by definition (4) that $\mathrm{Sta}_{t+(d+1)}^{\ell}\left(b_{1}+d+1\right)$.

- The case $c=b_{2}-(d+1)$ is similar, by using the induction hypothesis $\mathrm{dst}_{t+d}^{\ell}\left(b_{2}-d\right)=d$ and $\operatorname{Sta}_{t+d}^{\ell}\left(b_{2}-d\right)$.
- If $b_{1}+(d+1)<c<b_{2}-(d+1)$, then we have :

$$
\begin{aligned}
& b_{1}+d<c-1<b_{2}-d-2<b_{2}-d \\
& b_{1}+d<b_{1}+d+2<c+1<b_{2}-d
\end{aligned}
$$

So, by using the induction hypothesis we have $\operatorname{dst}_{t+d}^{\ell}(c-1) \geq d$ and $\mathrm{dst}_{t+d}^{\ell}(c+1) \geq d$.

Therefore, by using H_{c} we have (lemma for min ?) :

$$
\begin{aligned}
\mathrm{dst}_{t+(d+1)}^{\ell}(c) & =1+\min \left(\mathrm{dst}_{t+d}^{\ell}(c-1), \mathrm{dst}_{t+d}^{\ell}(c+1)\right) \\
& \geq 1+\min (d, d) \\
& =1+d
\end{aligned}
$$

Corollary 4.4 (End of a Light Cone).

$$
\begin{gathered}
\forall \ell t b_{1} b_{2}, \mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right) \Rightarrow \forall d \leq \frac{b_{2}-b_{1}}{2}, \\
\mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(b_{1}+d\right)=d \wedge \mathrm{Sta}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(b_{1}+d\right) \\
\wedge \mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(b_{2}-d\right)=d \wedge \operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(b_{2}-d\right)
\end{gathered}
$$

Proof. By using the corollaries 3.11 and 3.14 , this is a direct corollary of the previous proposition.

Notice that for a Light Cone $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right), b_{2}-b_{1}+1$ is the number of cells forming the Light Cone, boundaries included.

Corollary 4.5 (Middle of an odd Light Cone).

$$
\begin{gathered}
\forall \ell t b_{1} b_{2}, \mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right) \wedge b_{2}-b_{1}+1 \text { odd } \\
\Rightarrow \operatorname{Mid}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(\frac{b_{1}+b_{2}}{2}\right)
\end{gathered}
$$

Proof. Because $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$ we have $b_{1}+2 \leq b_{2}$, so $\frac{b_{2}-b_{1}}{2} \geq 1$.
Because $b_{2}-b_{1}+1$ is odd, we have :

$$
\begin{gathered}
\frac{b_{1}+b_{2}+1}{2}=\frac{b_{1}+b_{2}}{2} \\
b_{1}+\left(\frac{b_{2}-b_{1}}{2}-1\right)=\frac{b_{1}+b_{2}}{2}-1 \\
b_{1}-\left(\frac{b_{2}-b_{1}}{2}-1\right)=\frac{b_{1}+b_{2}}{2}+1
\end{gathered}
$$

Because $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$, by using the proposition 4.3 for $d=\frac{b_{2}-b_{1}}{2}-1$ we have:

$$
\begin{aligned}
& \mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}-1}^{\ell}\left(\frac{b_{1}+b_{2}}{2}-1\right)=\frac{b_{2}-b_{1}}{2}-1 \wedge \operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}-1}^{\ell}\left(\frac{b_{1}+b_{2}}{2}-1\right) \\
& \mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}-1}^{\ell}\left(\frac{b_{1}+b_{2}}{2}+1\right)=\frac{b_{2}-b_{1}}{2}-1 \wedge \operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}-1}^{\ell}\left(\frac{b_{1}+b_{2}}{2}+1\right)
\end{aligned}
$$

Because $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$, by using the proposition 4.3 for $d=\frac{b_{2}-b_{1}}{2}$ we have:

$$
\mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(\frac{b_{1}+b_{2}}{2}\right)=\frac{b_{2}-b_{1}}{2}
$$

So, by denoting $m=\frac{b_{1}+b_{2}}{2}$ we have :

$$
\mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}(m)>\max \left(\mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}-1}^{\ell}(m-1), \mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}-1}^{\ell}(m+1)\right)
$$

with $\operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}-1}^{\ell}(m-1)$ and $\operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}-1}^{\ell}(m+1)$.
Therefore by definition (5) $\operatorname{Mid}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}(m)$.
Corollary 4.6 (Middles of an even Light Cone).

$$
\begin{gathered}
\forall \ell t b_{1} b_{2}, \mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right) \wedge b_{2}-b_{1}+1 \text { even } \\
\Rightarrow \operatorname{Mid}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}-1}{2}\right) \wedge \operatorname{Mid}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}+1}{2}\right)
\end{gathered}
$$

Proof. Because $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$ we have $b_{1}+2 \leq b_{2}$, so because $b_{2}-b_{1}$ is odd we have $\frac{b_{2}-b_{1}-1}{2} \geq 1$.

Because $b_{2}-b_{1}+1$ is even, we have :

$$
\frac{b_{1}+b_{2}+1}{2}=\frac{b_{1}+b_{2}-1}{2}+1
$$

$$
\begin{aligned}
& b_{1}+\left(\frac{b_{2}-b_{1}-1}{2}-1\right)=\frac{b_{1}+b_{2}-1}{2}-1 \\
& b_{1}-\left(\frac{b_{2}-b_{1}-1}{2}-1\right)=\frac{b_{1}+b_{2}+1}{2}+1
\end{aligned}
$$

Because $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$, by using the proposition 4.3 for $d=\frac{b_{2}-b_{1}-1}{2}-1$ we have:

$$
\begin{gathered}
\mathrm{dst}_{t+\frac{b_{2}-b_{1}-1}{2}-1}^{\ell}\left(\frac{b_{1}+b_{2}-1}{2}-1\right)=\frac{b_{2}-b_{1}-1}{2}-1 \\
\quad \text { with } \operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}-1}^{\ell}\left(\frac{b_{1}+b_{2}-1}{2}-1\right) \\
\mathrm{dst}_{t+\frac{b_{2}-b_{1}-1}{2}-1}^{\ell}\left(\frac{b_{1}+b_{2}+1}{2}+1\right)=\frac{b_{2}-b_{1}-1}{2}-1
\end{gathered}
$$

$$
\text { with } \operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}-1}^{\ell}\left(\frac{b_{1}+b_{2}+1}{2}+1\right)
$$

So, by monotonicity (lemmas 3.11 and 3.14), we have :

$$
\begin{aligned}
& \operatorname{dst}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}-1}{2}-1\right)=\frac{b_{2}-b_{1}-1}{2}-1 \\
& \quad \text { with } \operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}-1}{2}-1\right) \\
& \operatorname{dst}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}+1}{2}+1\right)=\frac{b_{2}-b_{1}-1}{2}-1 \\
& \quad \text { with } \operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}+1}{2}+1\right)
\end{aligned}
$$

Because $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$, by using the proposition 4.3 for $d=\frac{b_{2}-b_{1}-1}{2}$ we have:

$$
\begin{gathered}
\mathrm{dst}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}-1}{2}\right)=\frac{b_{2}-b_{1}-1}{2} \\
\text { with } \operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}-1}{2}\right) \\
\mathrm{dst}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}+1}{2}\right)=\frac{b_{2}-b_{1}-1}{2} \\
\quad \text { with } \operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}+1}{2}\right)
\end{gathered}
$$

Notice that $\frac{b_{2}-b_{1}-1}{2}+1=\frac{b_{2}-b_{1}+1}{2}$. So, by monotonicity (lemma 3.14), we have :

$$
\mathrm{dst}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}-1}{2}\right)=\frac{b_{2}-b_{1}-1}{2}
$$

$$
\mathrm{dst}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}+1}{2}\right)=\frac{b_{2}-b_{1}-1}{2}
$$

So, by denoting $m_{1}=\frac{b_{1}+b_{2}-1}{2}$ and $m_{2}=\frac{b_{1}+b_{2}+1}{2}$ we have :
$\mathrm{dst}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(m_{1}\right)=\max \left(\mathrm{dst}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{1}-1\right), \mathrm{dst}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{1}+1\right)\right)$
with $\operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{1}-1\right), \operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{1}\right)$ and $\operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{1}+1\right)$.
Therefore by definition (5) $\operatorname{Mid}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(m_{1}\right)$.
$\mathrm{dst}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(m_{2}\right)=\max \left(\mathrm{dst}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{2}-1\right), \mathrm{dst}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{2}+1\right)\right)$
with $\operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{2}-1\right), \operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{2}\right)$ and $\operatorname{Sta}_{t+\frac{b_{2}-b_{1}-1}{2}}^{\ell}\left(m_{2}+1\right)$.
Therefore by definition (5) $\operatorname{Mid}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(m_{2}\right)$.
In every case, we have $\operatorname{Mid}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}}{2}\right) \wedge \operatorname{Mid}_{t+\frac{b_{2}-b_{1}+1}{2}}^{\ell}\left(\frac{b_{1}+b_{2}+1}{2}\right)$, but we thought the presentation clearer by separating both cases.

Lemma 4.7 (The other cells of a Light Cone are not Middles).

$$
\begin{gathered}
\forall \ell t b_{1} b_{2}, \mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right) \Rightarrow \forall t^{\prime} \geq t+\frac{b_{2}-b_{1}}{2}, \forall c, \\
\left(b_{1} \leq c<\frac{b_{1}+b_{2}}{2} \vee \frac{b_{1}+b_{2}+1}{2}<c \leq b_{2}\right) \Rightarrow \neg \operatorname{Mid}_{t^{\prime}+1}^{\ell}(c)
\end{gathered}
$$

Proof. Let ℓ, t, b_{1} and b_{2}. We assume the hypothesis $\mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$.
Let $t^{\prime} \geq t+\frac{b_{2}-b_{1}}{2}$ and let c be a cell.
Firstly, we prove that $c=b_{1}+d$ or $c=b_{2}-d$ with $0 \leq d<\frac{b_{2}-b_{1}}{2}$. The proof is made by case on c :

- If $b_{1} \leq c<\frac{b_{1}+b_{2}}{2}, b_{1} \leq c$ implies that $c=b_{1}+d$. Moreover:

$$
\text { We have } b_{1}+d=c<\frac{b_{1}+b_{2}}{2}
$$

Therefore $d<\frac{b_{1}+b_{2}}{2}-b_{1}=\frac{b_{1}+b_{2}}{2}-\frac{2 b_{1}}{2}$
Therefore (To do !) $d<\frac{b_{1}+b_{2}-2 b_{1}}{2}=\frac{b_{2}-b_{1}}{2}$

- If $\frac{b_{1}+b_{2}+1}{2}<c \leq b_{2}, c \leq b_{2}$ implies that $c=b_{2}-d$. Moreover:

$$
\text { We have } b_{2}-d=c<\frac{b_{1}+b_{2}+1}{2}
$$

$$
\text { Therefore } d<b_{2}-\frac{b_{1}+b_{2}+1}{2}=\frac{2 b_{2}}{2}-\frac{b_{1}+b_{2}+1}{2}
$$

$$
\text { Therefore (To do !) } d<\frac{2 b_{2}-b_{1}-b_{2}}{2}=\frac{b_{2}-b_{1}}{2}
$$

By using the hypothesis $\operatorname{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$ and the corollary 4.4 on $c=b_{1}+d$ or $c=b_{2}-d$, we have that:

$$
\mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}(c)=d \wedge \operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}(c)
$$

Therefore, because $t^{\prime}+1 \geq t^{\prime} \geq t+\frac{b_{2}-b_{1}}{2}$, by using the lemma 3.14 we have that:

$$
\begin{equation*}
\mathrm{dst}_{t^{\prime}+1}^{\ell}(c)=d \tag{d}
\end{equation*}
$$

Secondly, because $0 \leq d<\frac{b_{2}-b_{1}}{2}$, we have that $0 \leq d+1 \leq \frac{b_{2}-b_{1}}{2}$.
So, by using the hypothesis $\operatorname{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right)$ and the corollary 4.4 with $d+1$, we have that:

$$
\begin{aligned}
& \operatorname{dst}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(b_{1}+(d+1)\right)=d+1 \wedge \operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(b_{1}+(d+1)\right) \\
& \mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(b_{2}-(d+1)\right)=d+1 \wedge \operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}\left(b_{2}-(d+1)\right)
\end{aligned}
$$

We prove that $d+1 \leq \max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1)\right.$, dst $\left._{t^{\prime}}^{\ell}(c+1)\right)$ by case on c :

- If $b_{1} \leq c<\frac{b_{1}+b_{2}}{2}$, we have $c=b_{1}+d$, so $b_{1}+(d+1)=c+1$.

Therefore, by using H_{L}, we have that:

$$
\mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}(c+1)=d+1 \wedge \operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}(c+1)
$$

So, because $t^{\prime} \geq t+\frac{b_{2}-b_{1}}{2}$, by using the lemma 3.14 we have that:

$$
\mathrm{dst}_{t^{\prime}}^{\ell}(c+1)=d+1
$$

Therefore: $d+1 \leq \max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right)$

- If $\frac{b_{1}+b_{2}+1}{2}<c \leq b_{2}$, we have $c=b_{2}-d$, so $b_{2}-(d+1)=c-1$.

Therefore, by using H_{R}, we have that:

$$
\mathrm{dst}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}(c-1)=d+1 \wedge \operatorname{Sta}_{t+\frac{b_{2}-b_{1}}{2}}^{\ell}(c-1)
$$

So, because $t^{\prime} \geq t+\frac{b_{2}-b_{1}}{2}$, by using the lemma 3.14 we have that:

$$
\operatorname{dst}_{t^{\prime}}^{\ell}(c-1)=d+1
$$

Therefore: $d+1 \leq \max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right)$
We prove $\neg \operatorname{Mid}_{t^{\prime}+1}^{\ell}(c)$ by contradiction. If $\operatorname{Mid}_{t^{\prime}+1}^{\ell}(c)$ then, by using the lemma 2.3, we have that:

$$
\operatorname{dst}_{t^{\prime}+1}^{\ell}(c) \geq \max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right)
$$

So, by using H_{d}, we have that:

$$
\max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \mathrm{dst}_{t^{\prime}}^{\ell}(c+1)\right) \leq d
$$

But $d+1 \leq \max \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right)$, hence the contradiction.
The remaining (To do !) marks in the previous lemma come from parity problems to fix... The previous lemma can be generalized by using the monotonicity of the Mid field:

Corollary 4.8 (The other cells of a Light Cone are not Middles).

$$
\begin{gathered}
\forall \ell t b_{1} b_{2}, \mathrm{LC}_{t}^{\ell}\left(b_{1}, b_{2}\right) \Rightarrow \forall t^{\prime} c, \\
\left(b_{1} \leq c<\frac{b_{1}+b_{2}}{2} \vee \frac{b_{1}+b_{2}+1}{2}<c \leq b_{2}\right) \Rightarrow \neg \operatorname{Mid}_{t^{\prime}}^{\ell}(c)
\end{gathered}
$$

Proof. The proof is made by case on t^{\prime} :

- If $t^{\prime} \leq t+\frac{b_{2}-b_{1}}{2}$, we prove $\neg \operatorname{Mid}_{t^{\prime}}^{\ell}(c)$ by contradiction.

We assume that $\operatorname{Mid}_{t^{\prime}}^{\ell}(c)$. So, by using the lemma 3.12 we have that $\operatorname{Mid}_{t+\frac{b_{2}-b_{1}}{2}+1}^{\ell}(c)$.
But, by using the previous lemma with $t+\frac{b_{2}-b_{1}}{2}$, we have that $\neg \operatorname{Mid}_{t+\frac{b_{2}-b_{1}}{2}+1}^{\ell}(c)$, hence the contradiction.

- If $t^{\prime} \geq t+\frac{b_{2}-b_{1}}{2}+1$

By using the previous lemma with $t^{\prime}-1 \geq t+\frac{b_{2}-b_{1}}{2}$, we have that $\neg \operatorname{Mid}_{t^{\prime}}^{\ell}(c)$.

Lemma 4.9 (Each true Middle comes from a Light Cone).

$$
\begin{gathered}
\forall \ell t m, \neg \operatorname{Brd}_{t}^{\ell}(m) \wedge \operatorname{Mid}_{t}^{\ell}(m) \\
\quad \Rightarrow \operatorname{LC}_{t-d}^{\ell}(m-d, m+d) \\
\vee \mathrm{LC}_{t-(d+1)}^{\ell}(m-(d+1), m+d) \\
\vee \mathrm{LC}_{t-(d+1)}^{\ell}(m-d, m+(d+1))
\end{gathered}
$$

$$
\text { where } d=\operatorname{dst}_{t}^{\ell}(m)
$$

Proof. To do ! I already proved it, I will recopy soon.
Corollary 4.10 (A Middle induces a new Light Cone).

$$
\begin{gathered}
\forall \ell t m d, \operatorname{Mid}_{t}^{\ell}(m) \wedge \operatorname{dst}_{t}^{\ell}(m)=d \wedge d \geq 2 \\
\Rightarrow \forall t^{\prime},\left(\operatorname{Brd}_{t^{\prime}}^{\ell}(m-d) \Rightarrow \operatorname{LC}_{t}^{\ell+1}(m-d, m)\right) \\
\wedge\left(\operatorname{Brd}_{t^{\prime}}^{\ell}(m+d) \Rightarrow \operatorname{LC}_{t}^{\ell+1}(m, m+d)\right)
\end{gathered}
$$

Proof. Because dst ${ }_{t}^{\ell}(m)=d \geq 2, \operatorname{Mid}_{t}^{\ell}(m)$, by using the contraposition of the lemma 2.5, we have that $\neg \operatorname{Brd}_{t}^{\ell}(m)$.

The proof is made by case on the border. We assume $\operatorname{Brd}_{t^{\prime}}^{\ell}(m-d)$, but the proof in the case $\operatorname{Brd}_{t^{\prime}}^{\ell}(m+d)$ is similar.

Because $\neg \operatorname{Brd}_{t}^{\ell}(m)$ and $\operatorname{Mid}_{t}^{\ell}(m)$, by using the previous lemma we have that $\mathrm{LC}_{t-d}^{\ell}(m-d, m+d)$ or $\mathrm{LC}_{t-(d+1)}^{\ell}(m-(d+1), m+d)$ or $\mathrm{LC}_{t-(d+1)}^{\ell}(m-$ $d, m+(d+1))$.

By definition (7), if $\mathrm{LC}_{t-(d+1)}^{\ell}(m-(d+1), m+d)$ then $\operatorname{Ins}_{t-d}^{\ell}(m-d)$. So, by case $t^{\prime} \leq t-d$ or $t-d \leq t^{\prime}$ and by monotonicity, we obtain a contradiction dy using the lemma 2.4. So we have :

$$
\mathrm{LC}_{t-d}^{\ell}(m-d, m+d) \vee \mathrm{LC}_{t-(d+1)}^{\ell}(m-d, m+(d+1)) \quad\left(H_{L C}\right)
$$

In every case, by using the lemma 4.4 we have for every $i \leq d$ that $\mathrm{dst}_{t}^{\ell}(m-d+i)=i$ and $\operatorname{Sta}_{t}^{\ell}(m-d+i)$.

So, by using the monotonicity, for every $m-d<c<m$, we have $\mathrm{dst}_{t+1}^{\ell}(c)+1=\mathrm{dst}_{t}^{\ell}(c+1)$.

Moreover, by using the monotonicity, $\operatorname{Sta}_{t+1}^{\ell}(c)$.
Moreover, by using $H_{L C}$ and the definition (7) and the monotonicity, we have $\operatorname{Ins}_{t+1}^{\ell}(c)$.

Therefore, by definition (3), we have $\operatorname{Ins}_{t+1}^{\ell+1}(c)$.
Moreover, by using $H_{L C}$ and the definition (7) and the monotonicity, we have $\operatorname{Brd}_{t+1}^{\ell}(m-d)$. So, by definition (2) $\operatorname{Brd}_{t+1}^{\ell+1}(m-d)$.

Moreover, by using $H_{L C}$ and (the lemma 4.5 or the lemma 4.6) and the monotonicity, we have $\operatorname{Mid}_{t+1}^{\ell}(m)$. So, by definition (2) $\operatorname{Brd}_{t+1}^{\ell+1}(m)$.

Moreover, by hypothesis $d \geq 2$, so $(m-d)+2 \leq m$.
Therefore, by definition (7) we have $\mathrm{LC}_{t}^{\ell+1}(m-d, m)$.
To do properly !
Lemma 4.11 (One Brd and one Mid at previous layer of a Light Cone).

$$
\begin{gathered}
\forall \ell t b_{1} b_{2}, \operatorname{LC}_{t}^{\ell+1}\left(b_{1}, b_{2}\right) \\
\Rightarrow\left(\operatorname{Brd}_{t}^{\ell}\left(b_{1}\right) \wedge \neg \operatorname{Brd}_{t}^{\ell}\left(b_{2}\right) \wedge \operatorname{Mid}_{t}^{\ell}\left(b_{2}\right) \wedge \operatorname{dst}_{t}^{\ell}\left(b_{2}\right)=b_{2}-b_{1}\right) \\
\vee\left(\neg \operatorname{Brd}_{t}^{\ell}\left(b_{1}\right) \wedge \operatorname{Mid}_{t}^{\ell}\left(b_{1}\right) \wedge \operatorname{Brd}_{t}^{\ell}\left(b_{2}\right) \wedge \operatorname{dst}_{t}^{\ell}\left(b_{1}\right)=b_{2}-b_{1}\right)
\end{gathered}
$$

Proof. To do ! I already proved it, I will recopy soon.

5 MIDDLES

Lemma 5.1 (Paired Middles appear at the same time with the same distance).

$$
\begin{gathered}
\forall \ell t_{1} t_{2} m_{1} m_{2}, \operatorname{Mid}_{t_{1}}^{\ell}\left(m_{1}\right) \wedge \operatorname{Mid}_{t_{2}}^{\ell}\left(m_{2}\right) \wedge\left(m_{2}=m_{1}+1 \vee m_{1}=m_{2}+1\right) \\
\Rightarrow \operatorname{Mid}_{t_{1}}^{\ell}\left(m_{2}\right) \wedge \operatorname{dst}_{t_{1}}^{\ell}\left(m_{1}\right)=\operatorname{dst}_{t_{1}}^{\ell}\left(m_{2}\right)
\end{gathered}
$$

Proof. We assume that $m_{2}=m_{1}+1$ (the case $m_{1}=m_{2}+1$ is symmetrical). For sake of simplicity, we note $c_{1}=m_{1}-1$ and $c_{2}=m_{2}+1$.

We assume that $t_{1} \leq t_{2}$ and we prove the result both for t_{1} and t_{2}. Notice that because of the middles, we have $t_{1}, t_{2} \geq 1$.

We note $d_{1}=\mathrm{dst}_{t_{1}}^{\ell}\left(m_{1}\right)$ and $d_{2}=\mathrm{dst}_{t_{2}}^{\ell}\left(m_{2}\right)$, and we prove that $d_{1}=d_{2}$:
By using the lemma 2.3 on $\operatorname{Mid}_{t_{1}}^{\ell}\left(m_{1}\right)$ we have that :

$$
d_{1} \geq \max \left(\operatorname{dst}_{t_{1}-1}^{\ell}\left(c_{1}\right), \operatorname{dst}_{t_{1}-1}^{\ell}\left(m_{2}\right)\right) \geq \operatorname{dst}_{t_{1}-1}^{\ell}\left(m_{2}\right)
$$

By using the lemma 2.6 on $\operatorname{Mid}_{t_{1}}^{\ell}\left(m_{1}\right)$, we have $\operatorname{Sta}_{t_{1}-1}^{\ell}\left(m_{2}\right)$. So, by monotonicity (lemma 3.14), $\operatorname{dst}_{t_{1}-1}^{\ell}\left(m_{2}\right)=d_{2}$. Therefore $d_{1} \geq d_{2}$.

By using the lemma 2.3 on $\operatorname{Mid}_{t_{2}}^{\ell}\left(m_{2}\right)$ we have that :

$$
d_{2} \geq \max \left(\mathrm{dst}_{t_{2}-1}^{\ell}\left(m_{1}\right), \mathrm{dst}_{t_{2}-1}^{\ell}\left(c_{2}\right)\right) \geq \operatorname{dst}_{t_{2}-1}^{\ell}\left(m_{1}\right)
$$

We have two cases on $t_{1} \leq t_{2}$:

- In the case $t_{1}=t_{2}$, by using the lemma 2.6 on $\operatorname{Mid}_{t_{2}}^{\ell}\left(m_{2}\right)$, we have $\operatorname{Sta}_{t_{2}-1}^{\ell}\left(m_{1}\right)$. So, by monotonicity (lemma 3.14), $\operatorname{dst}_{t_{2}-1}^{\ell_{2}}\left(m_{1}\right)=d_{1}$.
- In the case $t_{1}<t_{2}$, by using the lemma 2.7 on $\operatorname{Mid}_{t_{1}}^{\ell}\left(m_{1}\right)$ we have $\operatorname{Sta}_{t_{1}}^{\ell}\left(m_{1}\right)$. So, by monotonicity (lemma 3.14), dst $t_{t_{2}-1}^{\ell}\left(m_{1}\right)=d_{1}$.

In every case, we have $d_{2} \geq d_{1}$, and because we proved $d_{1} \geq d_{2}$, we have $d_{1}=d_{2}$. So, in the following d_{1} and d_{2} will be denoted by d.

Because dst $t_{t_{1}}^{\ell}\left(m_{1}\right)=d=$ dst $_{t_{1}-1}^{\ell}\left(m_{2}\right)$, the middle m_{1} verifies the second case of the equation (5). In particular, we have that $\operatorname{Sta}_{t_{1}-1}^{\ell}\left(m_{1}\right)$. So, by monotonicity (lemma 3.14) we have dst $t_{t_{1}-1}^{\ell}\left(m_{1}\right)=\mathrm{dst}_{t_{1}}^{\ell}\left(m_{1}\right)=d$.

We have two cases on d :

- If dst $t_{t_{1}-1}^{\ell}\left(m_{2}\right)=d=0$, because $\operatorname{Sta}_{t_{1}-1}^{\ell}\left(m_{2}\right)$, by (4) we have $\operatorname{Brd}_{t_{1}-1}^{\ell}\left(m_{2}\right)$ To do ! May not be necessary, because it cannot happen in the case $\ell=0$ by axiom $n>2$ and the definition (2) of Brd, and this lemma is only used in that case.
- If dst $t_{t_{1}-1}^{\ell}\left(m_{2}\right)=d>0$ (In that case, because the distance is 0 at $t=$ 0 , we have $t_{1}-1>0$, so we can write $t_{1}-2$.), because $\operatorname{Sta}_{t_{1}-1}^{\ell}\left(m_{2}\right)$, by (4) we have two cases:
$-\operatorname{dst}_{t_{1}-1}^{\ell}\left(m_{2}\right)=1+\operatorname{dst}_{t_{1}-2}^{\ell}\left(m_{1}\right) \wedge \operatorname{Sta}_{t_{1}-2}^{\ell}\left(m_{1}\right)$
In that case, because $\operatorname{Sta}_{t_{1}-2}^{\ell}\left(m_{1}\right)$, by monotonicity (lemma 3.14) we have dst $t_{t_{1}-2}^{\ell}\left(m_{1}\right)=\mathrm{dst}_{t_{1}}^{\ell}\left(m_{1}\right)=d$.
Therefore $d=\mathrm{dst}_{t_{1}-1}^{\ell}\left(m_{2}\right)=1+\mathrm{dst}_{t_{1}-2}^{\ell}\left(m_{1}\right)=1+d$, hence the contradiction.
$-\operatorname{dst}_{t_{1}-1}^{\ell}\left(m_{2}\right)=1+\operatorname{dst}_{t_{1}-2}^{\ell}\left(c_{2}\right) \wedge \operatorname{Sta}_{t_{1}-2}^{\ell}\left(c_{2}\right)$.
So dst $t_{t_{1}-2}^{\ell}\left(c_{2}\right)=d-1$, and by monotonicity (lemma 3.14) we have dst $t_{t_{1}-1}^{\ell}\left(c_{2}\right)=d-1$.
Moreover, because $\mathrm{Sta}_{t_{1}-2}^{\ell}\left(c_{2}\right)$, by monotonicity (lemma 3.11) we have $\operatorname{Sta}_{t_{1}-1}^{\ell}\left(c_{2}\right)$.

Finally, because dst $t_{t_{1}-1}^{\ell}\left(m_{2}\right)=d_{2}$ and $\operatorname{Sta}_{t_{1}-1}^{\ell}\left(m_{2}\right)$, by monotonicity (lemma 3.14) we have $\mathrm{dst}_{t_{1}}^{\ell}\left(m_{2}\right)=d=\operatorname{dst}_{t_{1}}^{\ell}\left(m_{1}\right)$.
Therefore, we have :

* $\mathrm{dst}_{t_{1}-1}^{\ell}\left(m_{1}\right)=d$ and dst $t_{t_{1}-1}^{\ell}\left(c_{2}\right)=d-1$, so :

$$
\begin{aligned}
& \quad \operatorname{dst}_{t_{1}}^{\ell}\left(m_{2}\right)=d=\max (d, d-1)=\max \left(\operatorname{dst}_{t_{1}-1}^{\ell}\left(m_{1}\right), \operatorname{dst}_{t_{1}-1}^{\ell}\left(c_{2}\right)\right) \\
& * \operatorname{Sta}_{t_{1}-1}^{\ell}\left(m_{1}\right) \text { and } \operatorname{Sta}_{t_{1}-1}^{\ell}\left(m_{2}\right) \text { and } \operatorname{Sta}_{t_{1}-1}^{\ell}\left(c_{2}\right)
\end{aligned}
$$

So, by the definition (5), we have $\operatorname{Mid}_{t_{1}}^{\ell}\left(m_{2}\right)$.
The result can be prove for t_{2} too by using the monotonicity.
Lemma 5.2 (A Middle has the same distance over time).

$$
\forall \ell t_{1} t_{2} m, \operatorname{Mid}_{t_{1}}^{\ell}(m) \wedge \operatorname{Mid}_{t_{2}}^{\ell}(m) \Rightarrow \operatorname{dst}_{t_{1}}^{\ell}(m)=\mathrm{dst}_{t_{2}}^{\ell}(m)
$$

Proof. Two cases $t_{1} \leq t_{2}$ and $t_{2} \leq t_{1}$. In every case, a middle is stable, therefore the distance is the same.

To do properly !
Proposition 5.3 (Middles appear at the same time with the same distance).

$$
\begin{gathered}
\forall \ell t_{1} m_{1}, \neg \operatorname{Brd}_{t_{1}}^{\ell}\left(m_{1}\right) \wedge \operatorname{Mid}_{t_{1}}^{\ell}\left(m_{1}\right) \\
\Rightarrow\left(\forall t_{2} m_{2}, \operatorname{Mid}_{t_{2}}^{\ell}\left(m_{2}\right) \Rightarrow \operatorname{Mid}_{t_{1}}^{\ell}\left(m_{2}\right) \wedge \operatorname{dst}_{t_{1}}^{\ell}\left(m_{1}\right)=\operatorname{dst}_{t_{1}}^{\ell}\left(m_{2}\right)\right)
\end{gathered}
$$

Proof. The proof is made by induction on ℓ :

- In this case $\ell=0$.

Let t_{1} and m_{1} such that $\neg \operatorname{Brd}_{t_{1}}^{0}\left(m_{1}\right)$ and $\operatorname{Mid}_{t_{1}}^{0}\left(m_{1}\right)$.
Let t_{2} and m_{2} such that $\operatorname{Mid}_{t_{2}}^{0}\left(m_{2}\right)$.
Because $\ell=0$, by using the lemma 4.2 there exists $t_{\text {LC }}$ such that $\mathrm{LC}_{t_{\mathrm{LC}}}^{0}(1, n)$. We prove $\operatorname{Mid}_{t_{1}}^{\ell}\left(m_{2}\right)$ and dst$t_{t_{1}}^{\ell}\left(m_{1}\right)=\mathrm{dst}_{t_{1}}^{\ell}\left(m_{2}\right)$ by case on the parity of n :

- If $n=n-1+1$ is odd, then by using the corollary 4.5 we have that $\operatorname{Mid}_{t_{\mathrm{LC}}+\frac{n-1}{2}}^{0}\left(\frac{n+1}{2}\right)$.
By contradiction, if $m_{1} \neq \frac{n+1}{2}$, then by using the lemma 4.8 we have that $\neg \operatorname{Mid}_{t_{1}}^{0}\left(m_{1}\right)$, which contradicts the hypothesis $\operatorname{Mid}_{t_{1}}^{0}\left(m_{1}\right)$. So $m_{1}=\frac{n+1}{2}$.

By contradiction, if $m_{2} \neq \frac{n+1}{2}$, then by using the lemma 4.8 we have that $\neg \operatorname{Mid}_{t_{2}}^{0}\left(m_{2}\right)$, which contradicts the hypothesis $\operatorname{Mid}_{t_{2}}^{0}\left(m_{2}\right)$. So $m_{2}=\frac{n+1}{2}$.
Therefore, $m_{1}=m_{2}$, then by hypothesis $\operatorname{Mid}_{t_{1}}^{0}\left(m_{2}\right)$, and we have $\mathrm{dst}_{t_{1}}^{0}\left(m_{1}\right)=\mathrm{dst}_{t_{1}}^{0}\left(m_{2}\right)$.

- If $n=n-1+1$ is even, then by using the corollary 4.6 we have that $\operatorname{Mid}_{t_{\mathrm{LC}}+\frac{n}{2}}^{0}\left(\frac{n}{2}\right)$ and $\operatorname{Mid}_{t_{\mathrm{LC}}+\frac{n}{2}}^{0}\left(\frac{n}{2}+1\right)$.
By contradiction, if $m_{1} \neq \frac{n}{2}$ and $m_{1} \neq \frac{n}{2}+1$, then by using the lemma 4.8 we have that $\neg \operatorname{Mid}_{t_{1}}^{0}\left(m_{1}\right)$, which contradicts the hypothesis $\operatorname{Mid}_{t_{1}}^{0}\left(m_{1}\right)$. So $m_{1}=\frac{n}{2}$ or $m_{1}=\frac{n}{2}+1$.
By contradiction, if $m_{2} \neq \frac{n}{2}$ and $m_{2} \neq \frac{n}{2}+1$, then by using the lemma 4.8 we have that $\neg \operatorname{Mid}_{t_{2}}^{0}\left(m_{2}\right)$, which contradicts the hypothesis $\operatorname{Mid}_{t_{2}}^{0}\left(m_{2}\right)$. So $m_{2}=\frac{n}{2}$ or $m_{2}=\frac{n}{2}+1$.
The proof is made by case:
* If $m_{1}=m_{2}$, then by hypothesis $\operatorname{Mid}_{t_{1}}^{0}\left(m_{2}\right)$, and we have $\mathrm{dst}_{t_{1}}^{0}\left(m_{1}\right)=\mathrm{dst}_{t_{1}}^{0}\left(m_{2}\right)$.
* If $m_{1} \neq m_{2}$, then $m_{2}=m_{1}+1$ or $m_{1}=m_{2}+1$. So, because $\operatorname{Mid}_{t_{1}}^{0}\left(m_{1}\right)$ and $\operatorname{Mid}_{t_{2}}^{0}\left(m_{2}\right)$, by using the lemma 5.1 we have $\operatorname{Mid}_{t_{1}}^{0}\left(m_{2}\right)$ and $\operatorname{dst}_{t_{1}}^{0}\left(m_{1}\right)=\operatorname{dst}_{t_{1}}^{0}\left(m_{2}\right)$.
- We assume the induction hypothesis:

$$
\begin{gathered}
\forall t_{1} m_{1}, \neg \operatorname{Brd}_{t_{1}}^{\ell}\left(m_{1}\right) \wedge \operatorname{Mid}_{t_{1}}^{\ell}\left(m_{1}\right) \\
\Rightarrow\left(\forall t_{2} m_{2}, \operatorname{Mid}_{t_{2}}^{\ell}\left(m_{2}\right) \Rightarrow \operatorname{Mid}_{t_{1}}^{\ell}\left(m_{2}\right) \wedge \operatorname{dst}_{t_{1}}^{\ell}\left(m_{1}\right)=\operatorname{dst}_{t_{1}}^{\ell}\left(m_{2}\right)\right)
\end{gathered}
$$

Let t_{1} and m_{1} such that $\neg \operatorname{Brd}_{t_{1}}^{\ell+1}\left(m_{1}\right)$ and $\operatorname{Mid}_{t_{1}}^{\ell+1}\left(m_{1}\right)$, and let $d_{1}=$ $\mathrm{dst}_{t_{1}}^{\ell+1}\left(m_{1}\right)$.

By using the lemma 4.9 , there exists $t_{1}^{\prime}=t_{1}-d_{1}$ or $t_{1}-\left(d_{1}+1\right)$, $b_{1}=m_{1}-d_{1}$ or $m_{1}-\left(d_{1}+1\right)$, and $b_{1}^{\prime}=m_{1}+d_{1}$ or $m_{1}+\left(d_{1}+1\right)$ such that $\mathrm{LC}_{t_{1}^{\prime}}^{\ell+1}\left(b_{1}, b_{1}^{\prime}\right)$.
Notice that the case $b_{1}=m_{1}-\left(d_{1}+1\right)$ and $b_{1}^{\prime}=m_{1}+\left(d_{1}+1\right)$ is excluded, so $b_{1}^{\prime}-b_{1}=2 d_{1}$ or $2 d_{1}+1$, but not $2 d_{1}+2$.
Because $\mathrm{LC}_{t_{1}^{\prime}}^{\ell+1}\left(b_{1}, b_{1}^{\prime}\right)$, by using the lemma 4.11, we have that:

$$
\begin{aligned}
& \text { either } \operatorname{Brd}_{t_{1}^{\prime}}^{\ell}\left(b_{1}\right) \wedge \neg \operatorname{Brd}_{t_{1}^{\prime}}^{\ell}\left(b_{1}^{\prime}\right) \wedge \operatorname{Mid}_{t_{1}^{\prime}}^{\ell}\left(b_{1}^{\prime}\right) \wedge \operatorname{dst}_{t_{1}^{\prime}}^{\ell}\left(b_{1}^{\prime}\right)=b_{1}^{\prime}-b_{1} \\
& \text { or } \neg \operatorname{Brd}_{t_{1}^{\prime}}^{\ell}\left(b_{1}\right) \wedge \operatorname{Mid}_{t_{1}^{\prime}}^{\ell}\left(b_{1}\right) \wedge \operatorname{Brd}_{t_{1}^{\prime}}^{\ell}\left(b_{1}^{\prime}\right) \wedge \operatorname{dst}_{t_{1}^{\prime}}^{\ell}\left(b_{1}\right)=b_{1}^{\prime}-b_{1}
\end{aligned}
$$

We denote the border by b_{1}^{ℓ} and the middle by m_{1}^{ℓ}. In particular, we have that dst $t_{1}^{\ell}\left(m_{1}^{\ell}\right)=b_{1}^{\prime}-b_{1}=2 d_{1}$ or $2 d_{1}+1$.
Let t_{2} and m_{2} such that $\operatorname{Mid}_{t_{2}}^{\ell+1}\left(m_{2}\right)$, and let $d_{2}=\operatorname{dst}_{t_{2}}^{\ell+1}\left(m_{2}\right)$.
By using the same arguments, we have that $\mathrm{LC}_{t_{2}^{\prime}}^{\ell+1}\left(b_{2}, b_{2}^{\prime}\right)$, and at the previous layer we denote the border by b_{2}^{ℓ} and the middle by m_{2}^{ℓ}, with $\mathrm{dst}_{t_{2}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)=b_{2}^{\prime}-b_{2}=2 d_{2}$ or $2 d_{2}+1$.
Because $\neg \operatorname{Brd}_{t_{1}^{\prime}}^{\ell}\left(m_{1}^{\ell}\right)$ and $\operatorname{Mid}_{t_{1}^{\prime}}^{\ell}\left(m_{1}^{\ell}\right)$ and $\operatorname{Mid}_{t_{2}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$, by using the induction hypothesis $I H_{\ell}$, we have that $\operatorname{Mid}_{t_{1}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$ and dst $t_{t_{1}^{\prime}}^{\ell}\left(m_{1}^{\ell}\right)=$ $\mathrm{dst}_{t_{1}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$.
Because $\operatorname{Mid}_{t_{1}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$ and $\operatorname{Mid}_{t_{2}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$, by using the lemma 5.2 we have that $\mathrm{dst}_{t_{1}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)=\mathrm{dst}_{t_{2}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$.
Therefore $\mathrm{dst}_{t_{1}^{\prime}}^{\ell}\left(m_{1}^{\ell}\right)=\mathrm{dst}_{t_{1}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)=\mathrm{dst}_{t_{2}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$.
So, because $\mathrm{dst}_{t_{1}^{\prime}}^{\ell}\left(m_{1}^{\ell}\right)=2 d_{1}$ or $2 d_{1}+1$ and dst $t_{t_{2}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)=2 d_{2}$ or $2 d_{2}+$ 1 , by using the lemma 2.1 we have that $d_{1}=d_{2}$.
Therefore dst $t_{1}^{\ell+1}\left(m_{1}\right)=d_{1}=d_{2}=\mathrm{dst}_{t_{2}}^{\ell+1}\left(m_{2}\right)$.
It remains to prove that $\operatorname{Mid}_{t_{1}}^{\ell+1}\left(m_{2}\right)$.
Because $\neg \operatorname{Brd}_{t_{1}}^{\ell+1}\left(m_{1}\right)$ and $\operatorname{Mid}_{t_{1}}^{\ell+1}\left(m_{1}\right)$, by using the lemma 2.9 we have that $d_{2}=d_{1}=\operatorname{dst}_{t_{1}}^{\ell+1}\left(m_{1}\right) \geq 1$.
So dst $t_{t_{1}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)=\operatorname{dst}_{t_{2}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)=2 d_{2}$ or $2 d_{2}+1 \geq 2$.
Moreover, because dst $t_{1}^{\prime}\left(m_{2}^{\ell}\right)=\operatorname{dst}_{t_{2}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)=b_{2}^{\prime}-b_{2}$, where b_{2} and b_{2}^{\prime} are b_{2}^{ℓ} and m_{2}^{ℓ} or the reverse, we have $b_{2}^{\ell}=m_{2}^{\ell}-\mathrm{dst}_{t_{1}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$ or $b_{2}^{\ell}=m_{2}^{\ell}+\operatorname{dst}_{t_{1}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$.
Moreover, $\operatorname{Mid}_{t_{1}^{\prime}}^{\ell}\left(m_{2}^{\ell}\right)$ and $\operatorname{Brd}_{t_{2}^{\prime}}^{\ell}\left(b_{2}^{\ell}\right)$.
Therefore, by using the lemma 4.10, we have $\mathrm{LC}_{t_{1}^{\prime}}^{\ell+1}\left(b_{2}, b_{2}^{\prime}\right)$.
We prove $\operatorname{Mid}_{t_{1}}^{\ell+1}\left(m_{2}\right)$ by case on the parity of $b_{2}^{\prime}-b_{2}$:

- If $b_{2}^{\prime}-b_{2}$ is even, because $b_{2}^{\prime}-b_{2}=2 d_{2}$ or $2 d_{2}+1$, we have $b_{2}^{\prime}-b_{2}=2 d_{2}$ so $\frac{b_{2}^{\prime}-b_{2}}{2}=d_{2}$.
Because $b_{2}^{\prime}-b_{2}$ is even, $b_{2}^{\prime}-b_{2}+1$ is odd. So, by using the lemma 4.5, we have that $\operatorname{Mid}_{t_{1}^{\prime}+\frac{b_{2}^{\prime}-b_{2}}{2}}^{\ell+1}\left(\frac{b_{2}+b_{2}^{\prime}}{2}\right)$.
In that case (by using the previous results of the lemma 4.9), we have (To do !) $t_{1}^{\prime}=t_{1}-d_{1}$ and $b_{2}=m_{2}-d_{2}$ and $b_{2}^{\prime}=m_{2}+d_{2}$,
so :

$$
\begin{gathered}
t_{1}^{\prime}+\frac{b_{2}^{\prime}-b_{2}}{2}=t_{1}^{\prime}+d_{2}=t_{1}^{\prime}+d_{1}=t_{1} \\
\frac{b_{2}+b_{2}^{\prime}}{2}=\frac{\left(m_{2}-d_{2}\right)+\left(m_{2}+d_{2}\right)}{2}=\frac{2 m_{2}}{2}=m_{2}
\end{gathered}
$$

Therefore $\operatorname{Mid}_{t_{1}}^{\ell+1}\left(m_{2}\right)$.

- If $b_{2}^{\prime}-b_{2}$ is odd, because $b_{2}^{\prime}-b_{2}=2 d_{2}$ or $2 d_{2}+1$, we have $b_{2}^{\prime}-b_{2}=2 d_{2}+1$ so $\frac{b_{2}^{\prime}-b_{2}+1}{2}=d_{2}+1$.
Because $b_{2}^{\prime}-b_{2}$ is odd, $b_{2}^{\prime}-b_{2}+1$ is even. So, by using the lemma
4.6, we have that $\operatorname{Mid}_{t_{1}^{\prime}+\frac{b_{2}^{\prime}-b_{2}+1}{2}}^{\ell+1}\left(\frac{b_{2}+b_{2}^{\prime}-1}{2}\right)$ and $\operatorname{Mid}_{t_{1}^{\prime}+\frac{b_{2}^{\prime}-b_{2}+1}{2}}^{\ell+1}\left(\frac{b_{2}+b_{2}^{\prime}+1}{2}\right)$.

In that case (by using the previous results of the lemma 4.9), we have (To do !) $t_{1}^{\prime}=t_{1}-\left(d_{1}+1\right)$, so:

$$
t_{1}^{\prime}+\frac{b_{2}^{\prime}-b_{2}+1}{2}=t_{1}^{\prime}+d_{2}+1=t_{1}^{\prime}+d_{1}+1=t_{1}
$$

Morevover, there are two cases for b_{2} and b_{2}^{\prime} :

* $b_{2}=m_{2}-\left(d_{2}+1\right)$ and $b_{2}^{\prime}=m_{2}+d_{2}$. In that case:

$$
\frac{b_{2}+b_{2}^{\prime}+1}{2}=\frac{\left(m_{2}-d_{2}-1\right)+\left(m_{2}+d_{2}\right)+1}{2}=\frac{2 m_{2}}{2}=m_{2}
$$

Therefore, because $\operatorname{Mid}_{t_{1}^{\prime}+\frac{b_{2}^{\prime}-b_{2}+1}{2}}^{\ell+1}\left(\frac{b_{2}+b_{2}^{\prime}-1}{2}\right)$, we have that $\operatorname{Mid}_{t_{1}}^{\ell+1}\left(m_{2}\right)$.

* $b_{2}=m_{2}-d_{2}$ and $b_{2}^{\prime}=m_{2}+\left(d_{2}+1\right)$. In that case:

$$
\frac{b_{2}+b_{2}^{\prime}-1}{2}=\frac{\left(m_{2}-d_{2}\right)+\left(m_{2}+d_{2}+1\right)-1}{2}=\frac{2 m_{2}}{2}=m_{2}
$$

Therefore, because $\operatorname{Mid}_{t_{1}^{\prime}+\frac{b_{2}^{\prime}-b_{2}+1}{2}}^{\ell+1}\left(\frac{b_{2}+b_{2}^{\prime}+1}{2}\right)$, we have that $\operatorname{Mid}_{t_{1}}^{\ell+1}\left(m_{2}\right)$.

The remaining (To do !) marks in the previous lemma come from the fact that the cases for the form of the Light Cones "may" not be the same (in particular even or odd length) for the two middles. Maybe we should prove that this is the case anyway because at a layer ℓ the Light Cones have the same length?

Lemma 5.4 (Middles have max distance).

$$
\forall \ell t m, \neg \operatorname{Brd}_{t}^{\ell}(m) \wedge \operatorname{Mid}_{t}^{\ell}(m) \Rightarrow\left(\forall c, \operatorname{dst}_{t}^{\ell}(c) \leq \operatorname{dst}_{t}^{\ell}(m)\right)
$$

Proof. To do !
Lemma 5.5 (Cells with the same distance than a Middle are Middles).

$$
\forall \ell t m, \neg \operatorname{Brd}_{t}^{\ell}(m) \wedge \operatorname{Mid}_{t}^{\ell}(m) \Rightarrow\left(\forall c, \operatorname{dst}_{t}^{\ell}(c)=\operatorname{dst}_{t}^{\ell}(m) \Rightarrow \operatorname{Mid}_{t}^{\ell}(c)\right)
$$

Proof. To do !
Lemma 5.6 (Middles appear when each cell is stable).

$$
\forall \ell t m, \neg \operatorname{Brd}_{t}^{\ell}(m) \wedge \operatorname{Mid}_{t}^{\ell}(m) \Rightarrow \forall c, \operatorname{Sta}_{t}^{\ell}(c)
$$

Proof. To do !

6 SYNCHRONIZATION

Definition 6.1 (Output Field).

$$
\begin{align*}
\operatorname{Out}_{0}^{\ell}(c) & \stackrel{\text { def }}{=} \text { False } \\
\operatorname{Out}_{t+1}^{\ell}(c) & \stackrel{\text { def }}{=} \operatorname{Brd}_{t}^{\ell}(c-1) \wedge \operatorname{Brd}_{t}^{\ell}(c) \wedge \operatorname{Brd}_{t}^{\ell}(c+1) \tag{8}
\end{align*}
$$

Lemma 6.2 (The Border Field is True or False).

$$
\forall \ell t c, \operatorname{Brd}_{t}^{\ell}(c) \vee \neg \operatorname{Brd}_{t}^{\ell}(c)
$$

Proof. To do ! Using def or characterization of bool/Prop fields ?
Lemma 6.3 (The Output fires for every layer).

$$
\forall \ell t c, \mathrm{Out}_{t+1}^{\ell}(c) \Rightarrow \mathrm{Out}_{t+1}^{\ell+1}(c)
$$

Proof. Let ℓ, t and c. The hypothesis $\mathrm{Out}_{t+1}^{\ell}(c)$ implies (8) that $\operatorname{Brd}_{t}^{\ell}(c-1)$ and $\operatorname{Brd}_{t}^{\ell}(c)$ and $\operatorname{Brd}_{t}^{\ell}(c+1)$

So (2) we have $\operatorname{Brd}_{t}^{\ell+1}(c-1)$ and $\operatorname{Brd}_{t}^{\ell+1}(c)$ and $\operatorname{Brd}_{t}^{\ell+1}(c+1)$.
Therefore (8) we proved Out $t_{t+1}^{\ell+1}(c)$.
Lemma 6.4 (Three non-border Middles cannot be adjacent).

$$
\forall \ell t c, \neg \operatorname{Brd}_{t}^{\ell}(c) \wedge \operatorname{Mid}_{t}^{\ell}(c-1) \wedge \operatorname{Mid}_{t}^{\ell}(c) \wedge \operatorname{Mid}_{t}^{\ell}(c+1) \Rightarrow \text { False }
$$

Proof. We obtain a contradiction by case on t :

- If $t=0$ then (5) $\operatorname{Mid}_{0}^{\ell}(c)$ is False.
- Else $t=t^{\prime}+1$. By hypothesis $\neg \operatorname{Brd}_{t^{\prime}+1}^{\ell}(c)$, so we can use the lemma 5.3 to prove that:

$$
\mathrm{dst}_{t^{\prime}+1}^{\ell}(c-1)=\mathrm{dst}_{t^{\prime}+1}^{\ell}(c)=\mathrm{dst}_{t^{\prime}+1}^{\ell}(c+1)
$$

This distance will be denoted by d.
By using the lemma 2.6 on $\operatorname{Mid}_{t^{\prime}+1}^{\ell}(c)$, we have that $\operatorname{Sta}_{t^{\prime}}^{\ell}(c-1)$ and $\mathrm{Sta}_{t^{\prime}}^{\ell}(c+1)$. So, by using the lemma 3.14 on both we have:

$$
\begin{aligned}
\operatorname{dst}_{t^{\prime}}^{\ell}(c-1) & =\operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1)=d \\
\operatorname{dst}_{t^{\prime}}^{\ell}(c+1) & =\operatorname{dst}_{t^{\prime}+1}^{\ell}(c+1)=d
\end{aligned}
$$

Because $\neg \operatorname{Brd}_{t^{\prime}+1}^{\ell}(c)$ and $\operatorname{Mid}_{t^{\prime}+1}^{\ell}(c)$, by using the lemma 2.9 we have dst $t_{t^{\prime}+1}^{\ell}(c)>0$. So (6):

$$
\begin{aligned}
\mathrm{dst}_{t^{\prime}+1}^{\ell}(c) & =1+\min \left(\mathrm{dst}_{t^{\prime}}^{\ell}(c-1), \mathrm{dst}_{t^{\prime}}^{\ell}(c+1)\right) \\
& =1+\min (d, d) \\
& =1+d
\end{aligned}
$$

which contradicts $\operatorname{dst}_{t^{\prime}+1}^{\ell}(c)=d$.

Lemma 6.5 (A non-border Middle adjacent to a Border has a distance $=1$). $\forall \ell t c, \neg \operatorname{Brd}_{t}^{\ell}(c) \wedge \operatorname{Mid}_{t}^{\ell}(c) \wedge\left(\operatorname{Brd}_{t}^{\ell}(c-1) \vee \operatorname{Brd}_{t}^{\ell}(c+1)\right) \Rightarrow \operatorname{dst}_{t}^{\ell}(c)=1$
Proof. We prove the result by case on t :

- If $t=0$ then (5) $\operatorname{Mid}_{0}^{\ell}(c)$ is False, so we get a contradiction.
- Else $t=t^{\prime}+1$. Because $\neg \operatorname{Brd}_{t^{\prime}+1}^{\ell}(c)$ and $\operatorname{Mid}_{t^{\prime}+1}^{\ell}(c)$, by using the lemma 2.9 we have $\mathrm{dst}_{t^{\prime}+1}^{\ell}(c)>0$. So (6):

$$
\mathrm{dst}_{t^{\prime}+1}^{\ell}(c)=1+\min \left(\mathrm{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right)
$$

But $\left(\operatorname{Brd}_{t^{\prime}+1}^{\ell}(c-1) \vee \operatorname{Brd}_{t^{\prime}+1}^{\ell}(c+1)\right)$, so by using the lemma 2.5 we have $\left(\operatorname{dst}_{t^{\prime}+1}^{\ell}(c-1)=0 \vee \mathrm{dst}_{t^{\prime}+1}^{\ell}(c+1)=0\right)$, and by using the lemma 3.13 we have $\left(\mathrm{dst}_{t^{\prime}}^{\ell}(c-1)=0 \vee \mathrm{dst}_{t^{\prime}}^{\ell}(c+1)=0\right)$.
Therefore, $\min \left(\operatorname{dst}_{t^{\prime}}^{\ell}(c-1), \operatorname{dst}_{t^{\prime}}^{\ell}(c+1)\right)=0$, and dst $t_{t^{\prime}+1}^{\ell}(c)=1$.

Theorem 6.6 (The Output Field is synchronized).

$$
\forall \ell t c, \operatorname{Out}_{t}^{\ell}(c) \Rightarrow \forall c^{\prime}, \operatorname{Out}_{t}^{\ell}\left(c^{\prime}\right)
$$

Proof. We prove $\forall t \ell c$, $\mathrm{Out}_{t}^{\ell}(c) \Rightarrow \forall c^{\prime}$, $\mathrm{Out}_{t}^{\ell}\left(c^{\prime}\right)$ by case on t :

- If $t=0$, let ℓ and c. By (8), $\mathrm{Out}_{0}^{\ell}(c)$ is False, so the implication holds.
- Else, $t=t^{\prime}+1$ and we prove $\forall \ell c$, Out $_{t^{\prime}+1}^{\ell}(c) \Rightarrow \forall c^{\prime}$, Out $t_{t^{\prime}+1}^{\ell}\left(c^{\prime}\right)$ by induction on ℓ :
- Out $t_{t^{\prime}+1}^{0}(c)$ implies (8) $\operatorname{Brd}_{t^{\prime}}^{0}(c-1)$ and $\operatorname{Brd}_{t^{\prime}}^{0}(c)$ and $\operatorname{Brd}_{t^{\prime}}^{0}(c+$ 1), so (2) we have $c-1=1 \vee c-1=n$ and $c=1 \vee c=n$ and $c+1=1 \vee c+1=n$, which leads to a contradiction (three variables with distinct values, but only two available values).
- We assume the induction hypothesis:

$$
\forall c, \operatorname{Out}_{t^{\prime}+1}^{\ell}(c) \Rightarrow \forall c^{\prime}, \operatorname{Out}_{t^{\prime}+1}^{\ell}\left(c^{\prime}\right)
$$

Let c. The hypothesis $\mathrm{Out}_{t^{\prime}+1}^{\ell+1}(c)$ implies (8) that $\operatorname{Brd}_{t^{\prime}}^{\ell+1}(c-1)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell+1}(c)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell+1}(c+1)$.
For each cell $c^{\prime} \in\{c-1, c, c+1\}$, by using the lemma 6.2 we have $\operatorname{Brd}_{t^{\prime}}^{\ell}\left(c^{\prime}\right) \vee \neg \operatorname{Brd}_{t^{\prime}}^{\ell}\left(c^{\prime}\right)$. But because $\operatorname{Brd}_{t^{\prime}}^{\ell+1}\left(c^{\prime}\right)$ implies (2) that $\operatorname{Brd}_{t^{\prime}}^{\ell}\left(c^{\prime}\right) \vee \operatorname{Mid}_{t^{\prime}}^{\ell}\left(c^{\prime}\right)$, we have two cases: $\operatorname{Brd}_{t^{\prime}}^{\ell}\left(c^{\prime}\right)$ or $\neg \operatorname{Brd}_{t^{\prime}}^{\ell}\left(c^{\prime}\right) \wedge \operatorname{Mid}_{t^{\prime}}^{\ell}\left(c^{\prime}\right)$.
We prove $\forall c^{\prime}$, Out $t_{t^{\prime}+1}^{\ell+1}\left(c^{\prime}\right)$ for the eight possible cases:

* If $\operatorname{Brd}_{t^{\prime}}^{\ell}(c-1)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell}(c)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell}(c+1)$ then (8) Out $t_{t^{\prime}+1}^{\ell}(c)$.

So, by using $I H_{\ell}$ we have for every c^{\prime} that Out $t_{t^{\prime}+1}\left(c^{\prime}\right)$.
Therefore, by using the lemma 6.3, we have Out $t_{t^{\prime}+1}^{\ell+1}\left(c^{\prime}\right)$.

* If $\operatorname{Mid}_{t^{\prime}}^{\ell}(c-1)$ and $\operatorname{Mid}_{t^{\prime}}^{\ell}(c)$ and $\operatorname{Mid}_{t^{\prime}}^{\ell}(c+1)$, we obtain a contradiction by using the lemma 6.4.
* The other cases are :
- $\operatorname{Brd}_{t^{\prime}}^{\ell}(c-1)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell}(c)$ and $\operatorname{Mid}_{t^{\prime}}^{\ell}(c+1)$
- $\operatorname{Brd}_{t^{\prime}}^{\ell}(c-1)$ and $\operatorname{Mid}_{t^{\prime}}^{\ell}(c)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell}(c+1)$
- $\operatorname{Brd}_{t^{\prime}}^{\ell}(c-1)$ and $\operatorname{Mid}_{t^{\prime}}^{\ell}(c)$ and $\operatorname{Mid}_{t^{\prime}}^{\ell}(c+1)$
- $\operatorname{Mid}_{t^{\prime}}^{\ell}(c-1)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell}(c)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell}(c+1)$
- $\operatorname{Mid}_{t^{\prime}}^{\ell}(c-1)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell}(c)$ and $\operatorname{Mid}_{t^{\prime}}^{\ell}(c+1)$
- $\operatorname{Mid}_{t^{\prime}}^{\ell}(c-1)$ and $\operatorname{Mid}_{t^{\prime}}^{\ell}(c)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell}(c+1)$

In every case, there exists a cell $m \in\{c-1, c, c+1\}$ with is a middle, not a border, and is adjacent to a border. So, by using the lemma 6.5 we have $\mathrm{dst}_{t^{\prime}}^{\ell}(m)=1$.
Let c^{\prime} be a cell. By using the lemma 5.4 we have that:

$$
\mathrm{dst}_{t^{\prime}}^{\ell}\left(c^{\prime}\right) \leq \mathrm{dst}_{t^{\prime}}^{\ell}(m)=1
$$

We prove that $\operatorname{Brd}_{t^{\prime}}^{\ell+1}\left(c^{\prime}\right)$ by case on $\operatorname{dst}_{t^{\prime}}^{\ell}\left(c^{\prime}\right)$:

- In the case $\mathrm{dst}_{t^{\prime}}^{\ell}\left(c^{\prime}\right)=0$, by using the lemma 5.6 we have that $\operatorname{Sta}_{t^{\prime}}^{\ell}\left(c^{\prime}\right)$, so by using the lemma 2.8 we have that $\operatorname{Brd}_{t^{\prime}}^{\ell}\left(c^{\prime}\right)$.
- If dst $t_{t^{\prime}}^{\ell}\left(c^{\prime}\right)=1$, by using the lemma 5.5 we have that $\operatorname{Mid}_{t^{\prime}}^{\ell}\left(c^{\prime}\right)$.
Therefore, in every case $\operatorname{Brd}_{t^{\prime}}^{\ell+1}\left(c^{\prime}\right)$.
We proved it for every cell c^{\prime}, so we have $\operatorname{Brd}_{t^{\prime}}^{\ell+1}\left(c^{\prime}-1\right)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell+1}\left(c^{\prime}\right)$ and $\operatorname{Brd}_{t^{\prime}}^{\ell+1}\left(c^{\prime}+1\right)$, therefore Out $t_{t^{\prime}+1}^{\ell+1}\left(c^{\prime}\right)$.

