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Luidnel, you can prove the lemmas with the To do ! tag from p.35 to p.35.

1 FIELDS

For the Coq implementation, the fields are computed using booleans but the
results will be proven using propositions (cite Software Foundations ?). The
definition are simplified (quantifier elimination) for the implementation, as
opposed to the paper (cite finitization).

The boolean function gen is given with the evolution, and or , and and
if . . . then . . . else . . . will be the standard booleans operations.

Definition 1.1 (Input Field).

inp0(c)
def
= gen(c)

inpt+1(c)
def
= inpt(c− 1) or inpt(c) or inpt(c+ 1)

Inp0(c)
def
= gen(c) = true

Inpt+1(c)
def
= Inpt(c− 1) ∨ Inpt(c) ∨ Inpt(c+ 1) (1)

Like this definition, the boolean fields will be written with lowercase, and
the proposition fields in uppercase. The Coq file contains the proof of equiv-
alence, but they will be admitted in this report.

Lemma 1.2 (Equivalence for Inp).

∀tc, Inpt(c)⇔ inpt(c) = true

We assume in the following that the cells are labeled from 1 to n. For
the sake of clarity, the = and < will not be distinguished from their boolean
equivalent, as it is in Coq. The recursive definition of the proposition fields
is:
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Definition 1.3 (Proposition Fields).

Brd0t (c)
def
= Inpt(c) ∧ (1 = c ∨ c = n)

Brd`+1
t (c)

def
= Brd`t(c) ∨Mid`t(c) (2)

Ins0t (c)
def
= Inpt(c) ∧ 1 < c ∧ c < n

Ins`+1
0 (c)

def
= False

Ins`+1
t+1(c)

def
= Ins`t+1(c) ∧ Sta`t+1(c)

∧
(
dst`t+1(c) < dst`t(c− 1) ∨ dst`t+1(c) < dst`t(c− 1)

)
(3)

Sta`0(c)
def
= Brd`0(c)

Sta`t+1(c)
def
= Brd`t+1(c)

∨
(
dst`t+1(c) = 1 + dst`t(c− 1) ∧ Sta`t(c− 1)

)
∨
(
dst`t+1(c) = 1 + dst`t(c+ 1) ∧ Sta`t(c+ 1)

)
(4)

Mid`0(c)
def
= False

Mid`t+1(c)
def
=

(
dst`t+1(c) > max

(
dst`t(c− 1),dst`t(c+ 1)

)
∧ Sta`t(c− 1) ∧ Sta`t(c+ 1)

)
∨
(
dst`t+1(c) = max

(
dst`t(c− 1),dst`t(c+ 1)

)
∧ Sta`t(c− 1) ∧ Sta`t(c) ∧ Sta`t(c+ 1)

)
(5)

where dst is an integer field computed along the booleans fields.

Coq cannot guess∗ how to compute such an intricated recursion, so the
recursive definition of the booleans fields is sliced into abstract parts for dif-
ferent given levels. Firstly, using the input field, the border and inside fields
are defined for the level 0:

∗At least at my knowledge...
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Definition 1.4 (Border and Inside Fields at level 0).

brd0(t, c)
def
= inpt(c) and (1 = c or c = n)

ins0(t, c)
def
= inpt(c) and 1 < c and c < n

Then, the distance, stability and middle fields are defined for every level `,
assuming that the border and inside fields are defined too at this level:

Definition 1.5 (Distance, Stability and Middle Fields).

dstL(0, c, insL)
def
= 0

dstL(t+ 1, c, insL)
def
= if insL(t+ 1, c)

then 1 + min
(
dstL(t, c− 1),dstL(t, c+ 1)

)
else 0

staL(0, c,brdL,dstL)
def
= brdL(0, c)

staL(t+ 1, c,brdL,dstL)
def
= brdL(t+ 1, c)

or
(
dstL(t+ 1, c) = 1 + dstL(t, c− 1) and staL(t, c− 1)

)
or
(
dstL(t+ 1, c) = 1 + dstL(t, c+ 1) and staL(t, c+ 1)

)

midL(0, c,dstL, staL)
def
= false

midL(t+ 1, c,dstL, staL)
def
=

(
dstL(t+ 1, c) > max

(
dstL(t, c− 1),dstL(t, c+ 1)

)
and staL(t, c− 1) and staL(t, c+ 1)

)
or

(
dstL(t+ 1, c) = max

(
dstL(t, c− 1),dstL(t, c+ 1)

)
and staL(t, c− 1) and staL(t, c) and staL(t, c+ 1)

)
Finally, the border and inside fields for the level ` + 1 are defined using

the fields defined for the level `:
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Definition 1.6 (Border and Inside Fields at level `+ 1).

brdS(t, c,brdL,midL)
def
= brdL(t, c) or midL(t, c)

insS(0, c, insL,dstL, staL)
def
= false

insS(t+ 1, c, insL,dstL, staL)
def
= insL(t+ 1, c) and staL(t+ 1, c)

and
(
dstL(t+ 1, c) < dstL(t, c− 1) or dstL(t+ 1, c) < dstL(t, c− 1)

)

So the boolean fields should be defined by this mutual recursion:

brd0t (c)
def
= brd0(t, c)

brd`+1
t (c)

def
= brdS(t, c,brd`,mid`)

ins0t (c)
def
= ins0(t, c)

ins`+1
t (c)

def
= insS(t, c, ins`,dst`, sta`)

dst`t(c)
def
= dstL(t, c, ins`)

sta`t(c)
def
= staL(t, c,brd`,dst`)

mid`t(c)
def
= midL(t, c,dst`, sta`)

But Coq cannot guess the decreasing argument. So, instead, we substi-
tute the schemata to obtain only one mutual recursion for brd and ins, and
thereafter define the other fields:
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Definition 1.7 (Boolean Fields).

brd0
def
= brd0

brd`+1 def
= brdS

(
brd`,midL

(
dstL

(
ins`

)
, staL

(
brd`,dstL

(
ins`

))))

ins0
def
= ins0

ins`+1 def
= insS

(
ins`,dstL

(
ins`

)
, staL

(
brd`,dstL

(
ins`

)))

dst`
def
= dstL(ins`)

sta`
def
= staL(brd`,dst`)

mid`
def
= midL(dst`, sta`)

where f(g1, . . . , gk) denotes the field (t, c) 7→ f(t, c, g1, . . . , gk).

In particular, we obtain the equivalence between the respective boolean
and proposition fields, and the specification of dst:

Lemma 1.8 (Equivalence Lemma).

∀`tc,Brd`t(c)⇔ brd`t(c) = true

∀`tc, Ins`t(c)⇔ ins`t(c) = true

∀`tc,Sta`t(c)⇔ sta`t(c) = true

∀`tc,Mid`t(c)⇔ mid`t(c) = true

Lemma 1.9 (Distance Field).

dst`0(c) = 0

Ins`t+1(c)⇒ dst`t+1(c) = 1 +min
(
dst`t(c− 1),dst`t(c+ 1)

)
¬ Ins`t+1(c)⇒ dst`t+1(c) = 0 (6)

2 TECHNICAL LEMMAS

The following lemmas are general and are not from our framework of fields :
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Lemma 2.1.

∀nd1d2, (n = 2d1 ∨ n = 2d1 + 1) ∧ (n = 2d2 ∨ n = 2d2 + 1)⇒ d1 = d2

Proof. Coq ! The proof is made by case on n:

• In this case, n is even.

Because n = 2d1 ∨ n = 2d1 + 1 and n is even, we have that n = 2d1.

Because n = 2d2 ∨ n = 2d2 + 1 and n is even, we have that n = 2d2.

So 2d1 = 2d2, therefore d1 = d2.

• In this case, n is odd.

Because n = 2d1∨n = 2d1+1 and n is odd, we have that n = 2d1+1.

Because n = 2d2∨n = 2d2+1 and n is odd, we have that n = 2d2+1.

So 2d1 + 1 = 2d2 + 1, therefore d1 = d2.

The following lemmas are from our framework of fields :

Lemma 2.2 (Local Distance).

∀`tc,dst`t+1(c) ≤ 1 + min
(
dst`t(c− 1),dst`t(c+ 1)

)
Proof. Let `, t and c. By case :

• If Ins`t+1(c) then (6) the equality holds, so does the inequality.

• If ¬ Ins`t+1(c) then (6) dst`t+1(c) = 0, so the inequality holds.

Lemma 2.3 (Middle Distance).

∀`tc,Mid`t+1(c)⇒ dst`t+1(c) ≥ max
(
dst`t(c− 1),dst`t(c+ 1)

)
Proof. Let `, t and c. By using (5), Mid`t+1(c) implies two cases:

dst`t+1(c) > max
(
dst`t(c− 1),dst`t(c+ 1)

)
dst`t+1(c) = max

(
dst`t(c− 1),dst`t(c+ 1)

)
and the result holds in every cases.
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We could use the previous lemma in Coq to simplify the proof of the fol-
lowing:

Lemma 2.4 (Brd and Ins are exclusive).

∀`tc,Brd`t(c)⇒ Ins`t(c)⇒ False

Proof. The proof is made by induction on `:

• If ` = 0 then Brd`t(c) implies (2) that 1 = c or c = n, and Ins`t(c)

implies (3) that 1 < c < n, hence the contradiction.

• We assume that:

∀tc,Brd`t(c)⇒ Ins`t(c)⇒ False (IH `)

Let t and c, and we assume that:

Brd`+1
t (c) (HBrd)

Ins`+1
t (c) (HIns)

The proof of False is made by case on t :

– If t = 0 then (3) Ins`+1
t (c) is False, and is assumed.

– If t = t′ + 1, HIns implies (3) that:

Ins`t′+1(c) (HIns2)

dst`t′+1(c) < dst`t′(c− 1) ∨ dst`t′+1(c) < dst`t′(c− 1) (Hdst)

HBrd implies (2) that Brd`t′+1(c) ∨ Mid`t′+1(c), so the proof is
made by case:

∗ If Brd`t′+1(c), because HIns2, we have False by using IH `.

∗ If Mid`t′+1(c), then by lemma 2.3:

dst`t′+1(c) ≥ max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
therefore dst`t′+1(c) ≥ dst`t′(c−1) and dst`t′+1(c) ≥ dst`t′(c+

1), which contradicts Hdst.
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Lemma 2.5 (Distance of a Border).

∀`tc,Brd`t(c)⇒ dst`t(c) = 0

Proof. Assuming that Brd`t(c), by using the lemma 2.4, we have that¬ Ins`t(c).
Therefore (6) dst`t(c) = 0.

Lemma 2.6 (Middles have stable neighbours).

∀`tc,Mid`t+1(c)⇒ Sta`t(c− 1) ∧ Sta`t(c+ 1)

Proof. Coq ! The result is obtained by hypothesis on the two cases (5) of
Mid`t+1(c).

Use the previous lemma (introduced lately during the redaction) to sim-
plify some proofs ?

Lemma 2.7 (A middle is stable).

∀`tc,Mid`t(c)⇒ Sta`t(c)

Proof. Coq ! Let `. The proof is made by case on t:

• If t = 0, let c. By (5), Mid`0(c) is False, so the implication holds.

• Else, we prove Sta`t(c) by case (5) on the hypothesis Mid`t(c):

– In the first case we assume:

dst`t+1(c) > max
(
dst`t(c− 1),dst`t(c+ 1)

)
(Hd )

Sta`t(c− 1) (HSL)

Sta`t(c+ 1) (HSR)

Hd implies that:

dst`t+1(c) ≥ 1 + max
(
dst`t(c− 1),dst`t(c+ 1)

)
≥ 1 + dst`t(c− 1)

And the lemma 2.2 implies that:

dst`t+1(c) ≤ 1 + min
(
dst`t(c− 1),dst`t(c+ 1)

)
≤ 1 + dst`t(c− 1)

So dst`t+1(c) = 1+ dst`t(c− 1). But HSL, therefore (4) Sta`t(c).
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– In the second case, Sta`t(c) is obtained by hypothesis.

Lemma 2.8 (A stable cell with dst = 0 is a border).

∀`tc,Sta`t(c) ∧ dst`t(c) = 0⇒ Brd`t(c)

Proof. Coq ! Let `. The proof is made by case on t:

• If t = 0, let c. We assume that Sta`0(c) and dst`0(c) = 0. Brd`0(c) is
obtained (4) with the hypothesis Sta`0(c).

• Else, let c. We assume that Sta`t+1(c) and dst`t+1(c) = 0. The proof is
made by case (4) on the hypothesis Sta`t+1(c):

– In the first case Brd`t+1(c) is obtained by hypothesis.

– In the second case we have dst`t+1(c) = 1 + dst`t(c − 1), which
contradicts dst`t+1(c) = 0.

– In the second case we have dst`t+1(c) = 1 + dst`t(c + 1), which
contradicts dst`t+1(c) = 0.

Corollary 2.9 (A non-border Middle has a distance > 0).

∀`tc,¬Brd`t(c) ∧Mid`t(c)⇒ dst`t(c) > 0

Proof. By using the contraposition of the lemma 2.8 on the hypothesis¬Brd`t(c)
we have ¬Sta`t(c) or dst`t(c) 6= 0.

But by using the lemma 2.7 on the hypothesis Mid`t(c) we have Sta`t(c).
So dst`t(c) > 0.

Lemma 2.10 (At layer 0, the cells end up being awaken).

∃t, ∀c, Inpt(c)

Proof. By axiom (To do !), there exists at least one general. Therefore, the
input field propagates until every cell is awaken. To do properly !

An explicit formula coul be found, using the initial position of the generals.
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3 MONOTONICITY

In this section we prove monotonicity properties for the fields, which means
that if the property is verified for a given t, then this property is verified for
every t′ ≥ t.

Lemma 3.1 (Inp is monotone).

∀`tc, Inp`t(c)⇒ Inp`t+1(c)

Proof. Let `, t and c.
The hypothesis Inp`t(c) implies Inp`t+1(c) by using the equation (1).

Lemma 3.2 (Ins monotone implies dst is increasing).

∀`,
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,dst`t(c) ≤ dst`t+1(c)

)
Proof. Let `, and we assume:

∀tc, Ins`t(c)⇒ Ins`t+1(c) (Hins )

The proof is made by induction on t:

• If t = 0, then (6) dst`t(c) = 0, therefore dst`t(c) ≤ dst`t+1(c).

• We assume that:
∀c,dst`t(c) ≤ dst`t+1(c) (IH t)

Let c. We proove by case that dst`t+1(c) ≤ dst`t+2(c):

– If Ins`t+2(c) then (6) dst`t+2(c) = 1+min
(
dst`t+1(c− 1),dst`t+1(c+ 1)

)
.

But by using IH t we have that dst`t(c− 1) ≤ dst`t+1(c− 1) and
dst`t(c+ 1) ≤ dst`t+1(c+ 1), so:

1 + min
(
dst`t(c− 1),dst`t(c+ 1)

)
≤ dst`t+2(c)

Therefore, by using the lemma 2.2, we have dst`t+1(c) ≤ dst`t+2(c).

– If ¬ Ins`t+2(c) then (6) dst`t+2(c) = 0. Moreover, by using the
contraposition of Hins we have ¬ Ins`t+1(c), so dst`t+1(c) = 0

too. Therefore, in any cases, dst`t+1(c) ≤ dst`t+2(c).
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Lemma 3.3 (Brd and Ins monotone implies a stable dst is constant).

∀`,
(
∀tc,Brd`t(c)⇒ Brd`t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,Sta`t(c)⇒ dst`t(c) = dst`t+1(c)

)
Proof. Let `. We assume that:

∀tc,Brd`t(c)⇒ Brd`t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

We prove ∀tc,Sta`t(c)⇒ dst`t(c) = dst`t+1(c) by induction on t:

• If t = 0 then (4) the hypothesis Sta`0(c) implies Brd`0(c), so according
to HBrd we have Brd`1(c) too. Therefore, according to the lemma 2.5,
we have dst`0(c) = 0 = dst`1(c).

• We assume the induction hypothesis:

∀c,Sta`t(c)⇒ dst`t(c) = dst`t+1(c) (IH t)

Let c. We assume the hypothesis:

Sta`t+1(c) (HSta)

We prove dst`t+1(c) = dst`t+2(c) by case (4) on HSta:

– If Brd`t+1(c) then according to HBrd we have Brd`t+2(c) too.
Therefore, according to the lemma 2.5, we have dst`t+1(c) = 0 =

dst`t+2(c).

– In that case, we have:

dst`t+1(c) = 1 + dst`t(c− 1) (Hdst)

Sta`t(c− 1) (HSta2)

Firstly, by using HSta2 and the induction hypothesis IH t we have
dst`t(c− 1) = dst`t+1(c− 1), so by using Hdst, we have :

dst`t+1(c) = 1 + dst`t(c− 1) = 1 + dst`t+1(c− 1)

Moreover, by using the lemma 2.2, we have:

dst`t+2(c) ≤ 1 + min
(
dst`t+1(c− 1),dst`t+1(c+ 1)

)
≤ 1 + dst`t+1(c− 1)

≤ dst`t+1(c)
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Secondly, by using HIns and the lemma 3.2:

dst`t+1(c) ≤ dst`t+2(c)

Therefore, we proved the equality.

– If dst`t+1(c) = 1+dst`t(c+1) and Sta`t(c+1), the proof is similar
to the previous case.

Until this point, the proofs have been successfully implemented in Coq,
except for the three technical lemmas with the “Coq !” mark.

Lemma 3.4 (Brd and Ins monotone implies Sta monotone).

∀`,
(
∀tc,Brd`t(c)⇒ Brd`t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,Sta`t(c)⇒ Sta`t+1(c)

)
Proof. Let `. We assume that:

∀tc,Brd`t(c)⇒ Brd`t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

We prove ∀tc,Sta`t(c)⇒ Sta`t+1(c) by induction on t:

• If t = 0 then (4) the hypothesis Sta`0(c) implies Brd`0(c), so according
to HBrd we have Brd`1(c) too. Therefore, we have (4) the first case of
Sta`1(c).

• We assume the induction hypothesis:

∀c,Sta`t(c)⇒ Sta`t+1(c) (IH t)

Let c. We assume the hypothesis:

Sta`t+1(c) (HSta)

We prove Sta`t+2(c) by case (4) on HSta:

– If Brd`t+1(c) then according to HBrd we have Brd`t+2(c) too.
Therefore, we have (4) the first case of Sta`t+2(c).
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– In that case, we have:

dst`t+1(c) = 1 + dst`t(c− 1) (Hdst)

Sta`t(c− 1) (HSta2)

By using HBrd, HIns and the lemma 3.3, HSta2 implies that:

dst`t(c− 1) = dst`t+1(c− 1) (H)

Firstly, by using the lemma 2.2 then H then Hdst, we have:

dst`t+2(c) ≤ 1 + min
(
dst`t+1(c− 1),dst`t+1(c+ 1)

)
≤ 1 + dst`t+1(c− 1)

= 1 + dst`t(c− 1)

= dst`t+1(c)

Secondly, by using HIns and the lemma 3.2, we have:

dst`t+1(c) ≤ dst`t+2(c)

Therefore dst`t+1(c) = dst`t+2(c). So, by using Hdst then H:

dst`t+2(c) = dst`t+1(c)

= 1 + dst`t(c− 1)

= 1 + dst`t+1(c− 1)

Moreover, by using HSta2 and the induction hypothesis IH t we
have Sta`t+1(c− 1). Therefore (4) we proved Sta`t+2(c).

– If dst`t+1(c) = 1+dst`t(c+1) and Sta`t(c+1), the proof is similar
to the previous case.

Lemma 3.5 (Brd and Ins monotone implies Mid monotone).

∀`,
(
∀tc,Brd`t(c)⇒ Brd`t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,Mid`t(c)⇒ Mid`t+1(c)

)
Proof. Let `. We assume that:

∀tc,Brd`t(c)⇒ Brd`t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

We prove ∀tc,Mid`t(c)⇒ Mid`t+1(c) by case on t:
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• If t = 0 then (5) Mid`t(c) is False, so the implication holds.

• If t = t′ + 1, let c, and we assume the hypothesis:

Mid`t′+1(c) (HMid)

We prove Mid`t′+2(c) by case (5) on HMid:

– In the first case, we have:

dst`t′+1(c) > max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
(Hdst)

Sta`t′(c− 1) (HStaL)

Sta`t′(c+ 1) (HStaR)

By using HBrd, HIns and the lemma 3.3:

∗ HStaL implies that dst`t′(c− 1) = dst`t′+1(c− 1)

∗ HStaR implies that dst`t′(c+ 1) = dst`t′+1(c+ 1)

Therefore, we have:

max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
= max

(
dst`t′+1(c− 1),dst`t′+1(c+ 1)

)
(Hmax)

So, by using HIns and the lemma 3.2, then Hdst, then Hmax, we
have:

dst`t′+2(c) ≥ dst`t′+1(c)

> max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
= max

(
dst`t′+1(c− 1),dst`t′+1(c+ 1)

)
Moreover, by using HBrd, HIns and the lemma 3.4:

∗ HStaL implies that Sta`t′+1(c− 1)

∗ HStaR implies that Sta`t′+1(c+ 1)

Therefore, we have the left part of Mid`t′+2(c).

– In the second case, we have:

dst`t′+1(c) = max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
(Hdst)

Sta`t′(c− 1) (HStaL)

Sta`t′(c) (HStaC)

Sta`t′(c+ 1) (HStaR)

By using HBrd, HIns and the lemma 3.4:
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∗ HStaL implies that Sta`t′+1(c− 1)

∗ HStaC implies that Sta`t′+1(c)

∗ HStaR implies that Sta`t′+1(c+ 1)

Therefore, to obtain the right part of Mid`t′+2(c), it remains only

to prove that dst`t′+2(c) = max
(
dst`t′+1(c− 1),dst`t′+1(c+ 1)

)
.

By using HBrd, HIns and the lemma 3.3, Sta`t′+1(c) implies that:

dst`t′+1(c) = dst`t′+2(c) (Hdst2)

By using HBrd, HIns and the lemma 3.3:

∗ HStaL implies that dst`t′(c− 1) = dst`t′+1(c− 1)

∗ HStaR implies that dst`t′(c+ 1) = dst`t′+1(c+ 1)

Therefore, we have:

max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
= max

(
dst`t′+1(c− 1),dst`t′+1(c+ 1)

)
(Hmax)

So, by using Hdst2, then Hdst, then Hmax, we have:

dst`t′+2(c) = dst`t′+1(c)

= max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
= max

(
dst`t′+1(c− 1),dst`t′+1(c+ 1)

)
Therefore, we have the right part of Mid`t′+2(c).

Lemma 3.6 (Brd` and Ins` monotone implies Brd`+1 monotone).

∀`,
(
∀tc,Brd`t(c)⇒ Brd`t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,Brd`+1

t (c)⇒ Brd`+1
t+1(c)

)
Proof. Let `. We assume that:

∀tc,Brd`t(c)⇒ Brd`t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

Let t and c. We prove Brd`+1
t+1(c) by case (2) on the hypothesis Brd`+1

t (c):
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• In the first case, we have Brd`t(c), so by using HBrd we have Brd`t+1(c).

Therefore (2), we proved the left part of Brd`+1
t+1(c).

• In the second case, we have Mid`t(c).

So, by using HBrd, HIns and the lemma 3.5 we have Mid`t+1(c).

Therefore (2), we proved the right part of Brd`+1
t+1(c).

Lemma 3.7 (Brd` and Ins` monotone implies Ins`+1 monotone).

∀`,
(
∀tc,Brd`t(c)⇒ Brd`t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc, Ins`+1

t (c)⇒ Ins`+1
t+1(c)

)
Proof. Let `. We assume that:

∀tc,Brd`t(c)⇒ Brd`t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

We prove Ins`+1
t (c)⇒ Ins`+1

t+1(c) by case on t:

• If t = 0 then (3) Ins`+1
t (c) is False, so the implication holds.

• If t = t′ + 1, let c. The hypothesis Ins`+1
t′+1(c) implies (3):

Ins`t′+1(c) (HIns2)

Sta`t′+1(c) (HSta)

dst`t′+1(c) < dst`t′(c− 1) ∨ dst`t′+1(c) < dst`t′(c− 1) (Hdst)

By using HIns, HIns2 implies that Ins`t′+2(c).

Moreover, by using HBrd, HIns and the lemma 3.4, HSta implies that
Sta`t′+2(c).

Therefore, to obtain Ins`+1
t′+2(c) , it remains only to prove that dst`t′+2(c) <

dst`t′+1(c− 1) ∨ dst`t′+2(c) < dst`t′+1(c− 1).

Notice that by using HBrd, HIns and the lemma 3.3, HSta implies that:

dst`t′+1(c) = dst`t′+2(c) (H)

We prove dst`t′+2(c) < dst`t′+1(c − 1) ∨ dst`t′+2(c) < dst`t′+1(c − 1)

by case on Hdst:
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– In the first case, we have dst`t′+1(c) < dst`t′(c− 1).

So, by using H , then the case hypothesis, then HIns and the
lemma 3.2, we have:

dst`t′+2(c) = dst`t′+1(c)

< dst`t′(c− 1)

≤ dst`t′+1(c− 1)

Therefore, we proved the left part of dst`t′+2(c) < dst`t′+1(c −
1) ∨ dst`t′+2(c) < dst`t′+1(c− 1).

– The case dst`t′+1(c) < dst`t′(c+1) is similar, and proves the right
part of dst`t′+2(c) < dst`t′+1(c−1)∨dst

`
t′+2(c) < dst`t′+1(c−1).

Proposition 3.8 (Brd and Ins are monotone).

∀`,
(
∀tc,Brd`t(c)⇒ Brd`t+1(c)

)
∧
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
Proof. The proof is made by induction on `:

• If ` = 0, we prove the two parts separately:

– Let t and c. The hypothesis Brd0t (c) implies (2) that Inpt(c) and
1 = c ∨ c = n.

So, by using the lemma 3.1, we have Inpt+1(c) and 1 = c∨c = n.

Therefore (2) we proved that Brd0t+1(c).

– Let t and c. The hypothesis Ins0t (c) implies (3) that Inpt(c) and
1 < c < n.

So, by using the lemma 3.1, we have Inpt+1(c) and 1 < c < n.

Therefore (3) we proved that Ins0t+1(c).

• We assume the induction hypothesis:

∀tc,Brd`t(c)⇒ Brd`t+1(c) (IH `
Brd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (IH `
Ins)

By using IH `
Brd, IH `

Ins and the lemma 3.6, we have:

∀tc,Brd`+1
t (c)⇒ Brd`+1

t+1(c)
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By using IH `
Brd, IH `

Ins and the lemma 3.7, we have:

∀tc, Ins`+1
t (c)⇒ Ins`+1

t+1(c)

Therefore, we proved the induction step.

Corollary 3.9 (Brd is monotone).

∀`tc,Brd`t(c)⇒
(
∀t′, t′ ≥ t⇒ Brd`t′(c)

)
Proof. Let `, t and c. We assume the hypothesis Brd`t(c).

Let t′. We prove Brd`t′(c) by case on the hypothesis t′ ≥ t:

• If t′ = t then Brd`t′(c) by hypothesis.

• If t′ = t′′ + 1 with t′′ ≥ t such that Brd`t′′(c), then by using the left
part of the proposition 3.8 we have Brd`t′′+1(c). Therefore Brd`t′(c).

Corollary 3.10 (Ins is monotone).

∀`tc, Ins`t(c)⇒
(
∀t′, t′ ≥ t⇒ Ins`t′(c)

)
Proof. The proof is similar to the previous one, and uses the right part of the
proposition 3.8.

Corollary 3.11 (Sta is monotone).

∀`tc,Sta`t(c)⇒
(
∀t′, t′ ≥ t⇒ Sta`t′(c)

)
Proof. Let `, t and c. We assume the hypothesis Sta`t(c).

Let t′. We prove Sta`t′(c) by case on the hypothesis t′ ≥ t:

• If t′ = t then Sta`t′(c) by hypothesis.

• If t′ = t′′ + 1 with t′′ ≥ t such that Sta`t′′(c), then by using both parts
of the proposition 3.8 and the lemma 3.4 we have Sta`t′′+1(c).

Therefore Sta`t′(c).
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Corollary 3.12 (Mid is monotone).

∀`tc,Mid`t(c)⇒
(
∀t′, t′ ≥ t⇒ Mid`t′(c)

)
Proof. The proof is similar to the previous one, and uses both parts of the
proposition 3.8 and the lemma 3.5.

Corollary 3.13 (dst is increasing).

∀`tct′, t′ ≥ t⇒ dst`t′(c) ≥ dst`t(c)

Proof. Let `, t, c and t′.
We prove dst`t′(c) ≥ dst`t(c) by case on the hypothesis t′ ≥ t:

• If t′ = t then dst`t′(c) = dst`t(c), therefore dst`t′(c) ≥ dst`t(c).

• In that case t′ = t′′ + 1 with t′′ ≥ t such that dst`t′′(c) ≥ dst`t(c).

Therefore, by using the right part of the proposition 3.8 and the lemma
3.2, then the hypothesis, we have:

dst`t′(c) = dst`t′′+1(c)

≥ dst`t′′(c)

≥ dst`t(c)

Corollary 3.14 (A stable dst is constant).

∀`tc,Sta`t(c)⇒
(
∀t′, t′ ≥ t⇒ dst`t′(c) = dst`t(c)

)
Proof. Let `, t and c. We assume the hypothesis Sta`t(c).

Let t′. We prove Brd`t(c) by case on the hypothesis t′ ≥ t:

• If t′ = t then dst`t′(c) = dst`t(c).

• In that case t′ = t′′ + 1 with t′′ ≥ t such that dst`t′′(c) = dst`t(c).

By using the hypotheses Sta`t(c) and t′′ ≥ t, and the lemma 3.11, we
have Sta`t′′(c).

So, by using both parts of the proposition 3.8 and the lemma 3.3 we
have dst`t′′(c) = dst`t′′+1(c). Therefore:

dst`t′(c) = dst`t′′+1(c)

= dst`t′′(c)

= dst`t(c)
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4 LIGHT CONES

The condition b1 + 2 ≤ b2 ensures not only that b1 < b2, but also that there
is a cell between them, because boundaries between light cones are not light
cones themselves. This excludes the regions of the final layer to be called
light cones, so the results of this section are only for the phase transition.

The choice to exclude the final regions can be justified by the fact that
this is the first time the region alone cannot determine the middle, because a
middle needs 3 cells to appear and not only 2.

Insert pictures to justify the last condition and the name “light cone”.

Definition 4.1 (Light Cones).

LC`
t(b1, b2)

def
= b1 + 2 ≤ b2 ∧ Brd`t(b1) ∧ Brd`t(b2)

∧
(
∀c, b1 < c < b2 ⇒ Ins`t+1(c)

)
(7)

Corollary 4.2 (Light Cone at layer 0).

∃t,LC0
t (1, n)

Proof. Firstly, by axiom (To do !) n > 2.
Secondly, by using the lemma 2.10 there exists t such that for every cell c,

Inpt(c). So:

• We have (2) that Brd0t (1) and Brd0t (n)

• We have (3) for every 1 < c < n that Ins0t (c). So, by using the corol-
lary 3.10, for every 1 < c < n we have that Ins0t+1(c).

Therefore (7) LC0
t (1, n).

In the following, a
2 will denote the floor function of the half : the half of a

if a is even, and the half of a− 1 if a is odd.

Proposition 4.3 (Running of a Light Cone).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀ 0 ≤ d ≤ b2 − b1

2
,

dst`t+d(b1 + d) = d ∧ Sta`t+d(b1 + d)

∧dst`t+d(b2 − d) = d ∧ Sta`t+d(b2 − d)

∧
(
∀ b1 + d ≤ c ≤ b2 − d, dst`t+d(c) ≥ d

)
20



Proof. Let `, b1, b2 and t. We assume that LC`
t(b1, b2).

The proof is made by induction on d :

• In this case, d = 0.

Because LC`
t(b1, b2), we have that Brd`t(b1) and Brd`t(b2). So, by

using the lemma 2.5 we have that dst`t(b1) = 0 and dst`t(b2) = 0, and
by definition (4) we have that Sta`t(b1) and Sta`t(b2).

Moreover, for every b1 ≤ c ≤ b2 we have dst`t(c) ≥ 0 because dst is
an integer field.

• We assume that d + 1 ≤ b2−b1
2 . So d ≤ b2−b1

2 too, and we have the
induction hypothesis:

dst`t+d(b1 + d) = d ∧ Sta`t+d(b1 + d)

∧dst`t+d(b2 − d) = d ∧ Sta`t+d(b2 − d)

∧
(
∀ b1 + d ≤ c ≤ b2 − d,dst`t+d(c) ≥ d

)
Firstly, we prove that for every b1+(d+1) ≤ c ≤ b2− (d+1), we have :

dst`t+(d+1)(c) = 1 +min
(
dst`t+d(c− 1),dst`t+d(c+ 1)

)
(Hc)

Indeed, if b1+(d+1) ≤ c ≤ b2−(d+1) then by transitivity we have b1 <

c < b2. So, because LC`
t(b1, b2) we have Ins`t+1(c). So, by monotonicity

(lemma 3.10) we have Ins`t+(d+1)(c). Therefore, by using the equation (6),

we have that dst`t+(d+1)(c) = 1 +min
(
dst`t+d(c− 1),dst`t+d(c+ 1)

)
.

The proof is made by case on c :

• In that case, c = b1 + (d+ 1).

Because d+1 ≤ b2−b1
2 , we have 2d+2 ≤ b2−b1, so b1+d+2 ≤ b2−d.

So b1+d ≤ b1+d+2 ≤ b2−d, and by using the induction hypothesis
we have dst`t+d(b1 + d+ 2) ≥ d.

Moreover, by using the induction hypothesis, we have dst`t+d(b1+d) =

d, so dst`t+d(b1 + d+ 2) ≥ dst`t+d(b1 + d).

By using Hc with c = b1 + d+ 1, we have :

dst`t+(d+1)(b1 + d+ 1) = 1 +min
(
dst`t+d(b1 + d),dst`t+d(b1 + d+ 2)

)
= 1 + dst`t+d(b1 + d)

= 1 + d

21



Moreover, because dst`t+(d+1)(b1 + d+ 1) = 1 + dst`t+d(b1 + d) and
by induction hypothesis Sta`t+d(b1 + d), we have by definition (4) that
Sta`t+(d+1)(b1 + d+ 1).

• The case c = b2− (d+1) is similar, by using the induction hypothesis
dst`t+d(b2 − d) = d and Sta`t+d(b2 − d).

• If b1 + (d+ 1) < c < b2 − (d+ 1), then we have :

b1 + d < c− 1 < b2 − d− 2 < b2 − d

b1 + d < b1 + d+ 2 < c+ 1 < b2 − d

So, by using the induction hypothesis we have dst`t+d(c − 1) ≥ d and
dst`t+d(c+ 1) ≥ d.

Therefore, by using Hc we have (lemma for min ?) :

dst`t+(d+1)(c) = 1 +min
(
dst`t+d(c− 1),dst`t+d(c+ 1)

)
≥ 1 + min (d, d)

= 1 + d

Corollary 4.4 (End of a Light Cone).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀d ≤

b2 − b1
2

,

dst`
t+

b2−b1
2

(b1 + d) = d ∧ Sta`
t+

b2−b1
2

(b1 + d)

∧ dst`
t+

b2−b1
2

(b2 − d) = d ∧ Sta`
t+

b2−b1
2

(b2 − d)

Proof. By using the corollaries 3.11 and 3.14, this is a direct corollary of the
previous proposition.

Notice that for a Light Cone LC`
t(b1, b2), b2−b1+1 is the number of cells

forming the Light Cone, boundaries included.

Corollary 4.5 (Middle of an odd Light Cone).

∀`tb1b2,LC`
t(b1, b2) ∧ b2 − b1 + 1odd

⇒ Mid`
t+

b2−b1
2

(
b1 + b2

2
)
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Proof. Because LC`
t(b1, b2) we have b1 + 2 ≤ b2, so b2−b1

2 ≥ 1.
Because b2 − b1 + 1 is odd, we have :

b1 + b2 + 1

2
=

b1 + b2
2

b1 +

(
b2 − b1

2
− 1

)
=

b1 + b2
2

− 1

b1 −
(
b2 − b1

2
− 1

)
=

b1 + b2
2

+ 1

Because LC`
t(b1, b2), by using the proposition 4.3 for d = b2−b1

2 −1 we have:

dst`
t+

b2−b1
2 −1(

b1 + b2
2

− 1) =
b2 − b1

2
− 1 ∧ Sta`

t+
b2−b1

2 −1(
b1 + b2

2
− 1)

dst`
t+

b2−b1
2 −1(

b1 + b2
2

+ 1) =
b2 − b1

2
− 1 ∧ Sta`

t+
b2−b1

2 −1(
b1 + b2

2
+ 1)

Because LC`
t(b1, b2), by using the proposition 4.3 for d = b2−b1

2 we have:

dst`
t+

b2−b1
2

(
b1 + b2

2
) =

b2 − b1
2

So, by denoting m = b1+b2
2 we have :

dst`
t+

b2−b1
2

(m) > max
(
dst`

t+
b2−b1

2 −1(m− 1),dst`
t+

b2−b1
2 −1(m+ 1)

)
with Sta`

t+
b2−b1

2 −1(m− 1) and Sta`
t+

b2−b1
2 −1(m+ 1).

Therefore by definition (5) Mid`
t+

b2−b1
2

(m).

Corollary 4.6 (Middles of an even Light Cone).

∀`tb1b2,LC`
t(b1, b2) ∧ b2 − b1 + 1 even

⇒ Mid`
t+

b2−b1+1
2

(
b1 + b2 − 1

2
) ∧Mid`

t+
b2−b1+1

2

(
b1 + b2 + 1

2
)

Proof. Because LC`
t(b1, b2) we have b1 + 2 ≤ b2, so because b2 − b1 is odd

we have b2−b1−1
2 ≥ 1.

Because b2 − b1 + 1 is even, we have :

b1 + b2 + 1

2
=

b1 + b2 − 1

2
+ 1
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b1 +

(
b2 − b1 − 1

2
− 1

)
=

b1 + b2 − 1

2
− 1

b1 −
(
b2 − b1 − 1

2
− 1

)
=

b1 + b2 + 1

2
+ 1

Because LC`
t(b1, b2), by using the proposition 4.3 for d = b2−b1−1

2 − 1 we
have:

dst`
t+

b2−b1−1
2 −1(

b1 + b2 − 1

2
− 1) =

b2 − b1 − 1

2
− 1

with Sta`
t+

b2−b1−1
2 −1(

b1 + b2 − 1

2
− 1)

dst`
t+

b2−b1−1
2 −1(

b1 + b2 + 1

2
+ 1) =

b2 − b1 − 1

2
− 1

with Sta`
t+

b2−b1−1
2 −1(

b1 + b2 + 1

2
+ 1)

So, by monotonicity (lemmas 3.11 and 3.14), we have :

dst`
t+

b2−b1−1
2

(
b1 + b2 − 1

2
− 1) =

b2 − b1 − 1

2
− 1

with Sta`
t+

b2−b1−1
2

(
b1 + b2 − 1

2
− 1)

dst`
t+

b2−b1−1
2

(
b1 + b2 + 1

2
+ 1) =

b2 − b1 − 1

2
− 1

with Sta`
t+

b2−b1−1
2

(
b1 + b2 + 1

2
+ 1)

Because LC`
t(b1, b2), by using the proposition 4.3 for d = b2−b1−1

2 we have:

dst`
t+

b2−b1−1
2

(
b1 + b2 − 1

2
) =

b2 − b1 − 1

2

with Sta`
t+

b2−b1−1
2

(
b1 + b2 − 1

2
)

dst`
t+

b2−b1−1
2

(
b1 + b2 + 1

2
) =

b2 − b1 − 1

2

with Sta`
t+

b2−b1−1
2

(
b1 + b2 + 1

2
)

Notice that b2−b1−1
2 + 1 = b2−b1+1

2 . So, by monotonicity (lemma 3.14), we
have :

dst`
t+

b2−b1+1
2

(
b1 + b2 − 1

2
) =

b2 − b1 − 1

2
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dst`
t+

b2−b1+1
2

(
b1 + b2 + 1

2
) =

b2 − b1 − 1

2

So, by denoting m1 = b1+b2−1
2 and m2 = b1+b2+1

2 we have :

dst`
t+

b2−b1+1
2

(m1) = max
(
dst`

t+
b2−b1−1

2

(m1 − 1),dst`
t+

b2−b1−1
2

(m1 + 1)
)

with Sta`
t+

b2−b1−1
2

(m1− 1), Sta`
t+

b2−b1−1
2

(m1) and Sta`
t+

b2−b1−1
2

(m1 +1).

Therefore by definition (5) Mid`
t+

b2−b1+1
2

(m1).

dst`
t+

b2−b1+1
2

(m2) = max
(
dst`

t+
b2−b1−1

2

(m2 − 1),dst`
t+

b2−b1−1
2

(m2 + 1)
)

with Sta`
t+

b2−b1−1
2

(m2− 1), Sta`
t+

b2−b1−1
2

(m2) and Sta`
t+

b2−b1−1
2

(m2 +1).

Therefore by definition (5) Mid`
t+

b2−b1+1
2

(m2).

In every case, we have Mid`
t+

b2−b1+1
2

( b1+b2
2 ) ∧Mid`

t+
b2−b1+1

2

( b1+b2+1
2 ),

but we thought the presentation clearer by separating both cases.

Lemma 4.7 (The other cells of a Light Cone are not Middles).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀t′ ≥ t+

b2 − b1
2

,∀c,

(
b1 ≤ c <

b1 + b2
2

∨ b1 + b2 + 1

2
< c ≤ b2

)
⇒ ¬Mid`t′+1(c)

Proof. Let `, t, b1 and b2. We assume the hypothesis LC`
t(b1, b2).

Let t′ ≥ t+ b2−b1
2 and let c be a cell.

Firstly, we prove that c = b1 + d or c = b2 − d with 0 ≤ d < b2−b1
2 . The

proof is made by case on c:

• If b1 ≤ c < b1+b2
2 , b1 ≤ c implies that c = b1 + d. Moreover:

We have b1 + d = c <
b1 + b2

2

Therefore d <
b1 + b2

2
− b1 =

b1 + b2
2

− 2b1
2

Therefore (To do !) d <
b1 + b2 − 2b1

2
=

b2 − b1
2
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• If b1+b2+1
2 < c ≤ b2, c ≤ b2 implies that c = b2 − d. Moreover:

We have b2 − d = c <
b1 + b2 + 1

2

Therefore d < b2 −
b1 + b2 + 1

2
=

2b2
2
− b1 + b2 + 1

2

Therefore (To do !) d <
2b2 − b1 − b2

2
=

b2 − b1
2

By using the hypothesis LC`
t(b1, b2) and the corollary 4.4 on c = b1 + d or

c = b2 − d, we have that:

dst`
t+

b2−b1
2

(c) = d ∧ Sta`
t+

b2−b1
2

(c)

Therefore, because t′+1 ≥ t′ ≥ t+ b2−b1
2 , by using the lemma 3.14 we have

that:

dst`t′+1(c) = d (Hd)

Secondly, because 0 ≤ d < b2−b1
2 , we have that 0 ≤ d+ 1 ≤ b2−b1

2 .
So, by using the hypothesis LC`

t(b1, b2) and the corollary 4.4 with d + 1,
we have that:

dst`
t+

b2−b1
2

(b1 + (d+ 1)) = d+ 1 ∧ Sta`
t+

b2−b1
2

(b1 + (d+ 1)) (HL)

dst`
t+

b2−b1
2

(b2 − (d+ 1)) = d+ 1 ∧ Sta`
t+

b2−b1
2

(b2 − (d+ 1)) (HR)

We prove that d+ 1 ≤ max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
by case on c:

• If b1 ≤ c < b1+b2
2 , we have c = b1 + d, so b1 + (d+ 1) = c+ 1.

Therefore, by using HL, we have that:

dst`
t+

b2−b1
2

(c+ 1) = d+ 1 ∧ Sta`
t+

b2−b1
2

(c+ 1)

So, because t′ ≥ t+ b2−b1
2 , by using the lemma 3.14 we have that:

dst`t′(c+ 1) = d+ 1

Therefore: d+ 1 ≤ max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
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• If b1+b2+1
2 < c ≤ b2, we have c = b2 − d, so b2 − (d+ 1) = c− 1.

Therefore, by using HR, we have that:

dst`
t+

b2−b1
2

(c− 1) = d+ 1 ∧ Sta`
t+

b2−b1
2

(c− 1)

So, because t′ ≥ t+ b2−b1
2 , by using the lemma 3.14 we have that:

dst`t′(c− 1) = d+ 1

Therefore: d+ 1 ≤ max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
We prove ¬Mid`t′+1(c) by contradiction. If Mid`t′+1(c) then, by using the
lemma 2.3, we have that:

dst`t′+1(c) ≥ max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
So, by using Hd, we have that:

max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
≤ d

But d+ 1 ≤ max
(
dst`t′(c− 1),dst`t′(c+ 1)

)
, hence the contradiction.

The remaining (To do !) marks in the previous lemma come from par-
ity problems to fix... The previous lemma can be generalized by using the
monotonicity of the Mid field:

Corollary 4.8 (The other cells of a Light Cone are not Middles).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀t′c,(

b1 ≤ c <
b1 + b2

2
∨ b1 + b2 + 1

2
< c ≤ b2

)
⇒ ¬Mid`t′(c)

Proof. The proof is made by case on t′:

• If t′ ≤ t+ b2−b1
2 , we prove ¬Mid`t′(c) by contradiction.

We assume that Mid`t′(c). So, by using the lemma 3.12 we have that
Mid`

t+
b2−b1

2 +1
(c).

But, by using the previous lemma with t+ b2−b1
2 , we have that¬Mid`

t+
b2−b1

2 +1
(c),

hence the contradiction.
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• If t′ ≥ t+ b2−b1
2 + 1

By using the previous lemma with t′ − 1 ≥ t + b2−b1
2 , we have that

¬Mid`t′(c).

Lemma 4.9 (Each true Middle comes from a Light Cone).

∀`tm,¬Brd`t(m) ∧Mid`t(m)

⇒ LC`
t−d(m− d,m+ d)

∨LC`
t−(d+1)(m− (d+ 1),m+ d)

∨LC`
t−(d+1)(m− d,m+ (d+ 1))

where d = dst`t(m)

Proof. To do ! I already proved it, I will recopy soon.

Corollary 4.10 (A Middle induces a new Light Cone).

∀`tmd,Mid`t(m) ∧ dst`t(m) = d ∧ d ≥ 2

⇒ ∀t′,
(
Brd`t′(m− d)⇒ LC`+1

t (m− d,m)
)

∧
(
Brd`t′(m+ d)⇒ LC`+1

t (m,m+ d)
)

Proof. Because dst`t(m) = d ≥ 2, Mid`t(m), by using the contraposition of
the lemma 2.5, we have that ¬Brd`t(m).

The proof is made by case on the border. We assume Brd`t′(m − d), but
the proof in the case Brd`t′(m+ d) is similar.

Because ¬Brd`t(m) and Mid`t(m), by using the previous lemma we have
that LC`

t−d(m−d,m+d) or LC`
t−(d+1)(m−(d+1),m+d) or LC`

t−(d+1)(m−
d,m+ (d+ 1)).

By definition (7), if LC`
t−(d+1)(m− (d+1),m+ d) then Ins`t−d(m− d).

So, by case t′ ≤ t − d or t − d ≤ t′ and by monotonicity, we obtain a
contradiction dy using the lemma 2.4. So we have :

LC`
t−d(m− d,m+ d) ∨ LC`

t−(d+1)(m− d,m+ (d+ 1)) (HLC )

In every case, by using the lemma 4.4 we have for every i ≤ d that
dst`t(m− d+ i) = i and Sta`t(m− d+ i).
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So, by using the monotonicity, for every m − d < c < m, we have
dst`t+1(c) + 1 = dst`t(c+ 1).

Moreover, by using the monotonicity, Sta`t+1(c).
Moreover, by using HLC and the definition (7) and the monotonicity, we

have Ins`t+1(c).
Therefore, by definition (3), we have Ins`+1

t+1(c).
Moreover, by using HLC and the definition (7) and the monotonicity, we

have Brd`t+1(m− d). So, by definition (2) Brd`+1
t+1(m− d).

Moreover, by using HLC and (the lemma 4.5 or the lemma 4.6) and the
monotonicity, we have Mid`t+1(m). So, by definition (2) Brd`+1

t+1(m).
Moreover, by hypothesis d ≥ 2, so (m− d) + 2 ≤ m.
Therefore, by definition (7) we have LC`+1

t (m− d,m).
To do properly !

Lemma 4.11 (One Brd and one Mid at previous layer of a Light Cone).

∀`tb1b2,LC`+1
t (b1, b2)

⇒
(
Brd`t(b1) ∧ ¬Brd

`
t(b2) ∧Mid`t(b2) ∧ dst`t(b2) = b2 − b1

)
∨
(
¬Brd`t(b1) ∧Mid`t(b1) ∧ Brd`t(b2) ∧ dst`t(b1) = b2 − b1

)
Proof. To do ! I already proved it, I will recopy soon.

5 MIDDLES

Lemma 5.1 (Paired Middles appear at the same time with the same distance).

∀`t1t2m1m2,Mid`t1(m1) ∧Mid`t2(m2) ∧ (m2 = m1 + 1 ∨m1 = m2 + 1)

⇒ Mid`t1(m2) ∧ dst`t1(m1) = dst`t1(m2)

Proof. We assume that m2 = m1+1 (the case m1 = m2+1 is symmetrical).
For sake of simplicity, we note c1 = m1 − 1 and c2 = m2 + 1.

We assume that t1 ≤ t2 and we prove the result both for t1 and t2. Notice
that because of the middles, we have t1, t2 ≥ 1.

We note d1 = dst`t1(m1) and d2 = dst`t2(m2), and we prove that d1 = d2:
By using the lemma 2.3 on Mid`t1(m1) we have that :

d1 ≥ max
(
dst`t1−1(c1),dst

`
t1−1(m2)

)
≥ dst`t1−1(m2)
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By using the lemma 2.6 on Mid`t1(m1), we have Sta`t1−1(m2). So, by
monotonicity (lemma 3.14), dst`t1−1(m2) = d2. Therefore d1 ≥ d2.

By using the lemma 2.3 on Mid`t2(m2) we have that :

d2 ≥ max
(
dst`t2−1(m1),dst

`
t2−1(c2)

)
≥ dst`t2−1(m1)

We have two cases on t1 ≤ t2 :

• In the case t1 = t2, by using the lemma 2.6 on Mid`t2(m2), we have
Sta`t2−1(m1). So, by monotonicity (lemma 3.14), dst`t2−1(m1) = d1.

• In the case t1 < t2, by using the lemma 2.7 on Mid`t1(m1) we have
Sta`t1(m1). So, by monotonicity (lemma 3.14), dst`t2−1(m1) = d1.

In every case, we have d2 ≥ d1, and because we proved d1 ≥ d2, we have
d1 = d2. So, in the following d1 and d2 will be denoted by d.

Because dst`t1(m1) = d = dst`t1−1(m2), the middle m1 verifies the sec-
ond case of the equation (5). In particular, we have that Sta`t1−1(m1). So, by
monotonicity (lemma 3.14) we have dst`t1−1(m1) = dst`t1(m1) = d.

We have two cases on d :

• If dst`t1−1(m2) = d = 0, because Sta`t1−1(m2), by (4) we have
Brd`t1−1(m2) To do ! May not be necessary, because it cannot hap-
pen in the case ` = 0 by axiom n > 2 and the definition (2) of Brd,
and this lemma is only used in that case.

• If dst`t1−1(m2) = d > 0 (In that case, because the distance is 0 at t =
0, we have t1 − 1 > 0, so we can write t1 − 2.), because Sta`t1−1(m2),
by (4) we have two cases:

– dst`t1−1(m2) = 1 + dst`t1−2(m1) ∧ Sta`t1−2(m1)

In that case, because Sta`t1−2(m1), by monotonicity (lemma 3.14)
we have dst`t1−2(m1) = dst`t1(m1) = d.

Therefore d = dst`t1−1(m2) = 1 + dst`t1−2(m1) = 1 + d, hence
the contradiction.

– dst`t1−1(m2) = 1 + dst`t1−2(c2) ∧ Sta`t1−2(c2).

So dst`t1−2(c2) = d − 1, and by monotonicity (lemma 3.14) we
have dst`t1−1(c2) = d− 1.

Moreover, because Sta`t1−2(c2), by monotonicity (lemma 3.11)
we have Sta`t1−1(c2).
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Finally, because dst`t1−1(m2) = d2 and Sta`t1−1(m2), by mono-
tonicity (lemma 3.14) we have dst`t1(m2) = d = dst`t1(m1).

Therefore, we have :

∗ dst`t1−1(m1) = d and dst`t1−1(c2) = d− 1, so :

dst`t1(m2) = d = max (d, d− 1) = max
(
dst`t1−1(m1),dst

`
t1−1(c2)

)
∗ Sta`t1−1(m1) and Sta`t1−1(m2) and Sta`t1−1(c2)

So, by the definition (5), we have Mid`t1(m2).

The result can be prove for t2 too by using the monotonicity.

Lemma 5.2 (A Middle has the same distance over time).

∀`t1t2m,Mid`t1(m) ∧Mid`t2(m)⇒ dst`t1(m) = dst`t2(m)

Proof. Two cases t1 ≤ t2 and t2 ≤ t1. In every case, a middle is stable,
therefore the distance is the same.

To do properly !

Proposition 5.3 (Middles appear at the same time with the same distance).

∀`t1m1,¬Brd`t1(m1) ∧Mid`t1(m1)

⇒
(
∀t2m2,Mid`t2(m2)⇒ Mid`t1(m2) ∧ dst`t1(m1) = dst`t1(m2)

)
Proof. The proof is made by induction on `:

• In this case ` = 0.

Let t1 and m1 such that ¬Brd0t1(m1) and Mid0t1(m1).

Let t2 and m2 such that Mid0t2(m2).

Because ` = 0, by using the lemma 4.2 there exists tLC such that
LC0

tLC
(1, n). We prove Mid`t1(m2) and dst`t1(m1) = dst`t1(m2) by

case on the parity of n:

– If n = n− 1 + 1 is odd, then by using the corollary 4.5 we have
that Mid0

tLC+n−1
2

(n+1
2 ).

By contradiction, if m1 6= n+1
2 , then by using the lemma 4.8 we

have that¬Mid0t1(m1), which contradicts the hypothesis Mid0t1(m1).
So m1 = n+1

2 .
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By contradiction, if m2 6= n+1
2 , then by using the lemma 4.8 we

have that¬Mid0t2(m2), which contradicts the hypothesis Mid0t2(m2).
So m2 = n+1

2 .
Therefore, m1 = m2, then by hypothesis Mid0t1(m2), and we
have dst0t1(m1) = dst0t1(m2).

– If n = n− 1 + 1 is even, then by using the corollary 4.6 we have
that Mid0tLC+n

2
(n2 ) and Mid0tLC+n

2
(n2 + 1).

By contradiction, if m1 6= n
2 and m1 6= n

2 + 1, then by using
the lemma 4.8 we have that ¬Mid0t1(m1), which contradicts the
hypothesis Mid0t1(m1). So m1 = n

2 or m1 = n
2 + 1.

By contradiction, if m2 6= n
2 and m2 6= n

2 + 1, then by using
the lemma 4.8 we have that ¬Mid0t2(m2), which contradicts the
hypothesis Mid0t2(m2). So m2 = n

2 or m2 = n
2 + 1.

The proof is made by case:

∗ If m1 = m2, then by hypothesis Mid0t1(m2), and we have
dst0t1(m1) = dst0t1(m2).

∗ If m1 6= m2, then m2 = m1 + 1 or m1 = m2 + 1. So,
because Mid0t1(m1) and Mid0t2(m2), by using the lemma 5.1
we have Mid0t1(m2) and dst0t1(m1) = dst0t1(m2).

• We assume the induction hypothesis:

∀t1m1,¬Brd`t1(m1) ∧Mid`t1(m1) (IH `)

⇒
(
∀t2m2,Mid`t2(m2)⇒ Mid`t1(m2) ∧ dst`t1(m1) = dst`t1(m2)

)
Let t1 and m1 such that ¬Brd`+1

t1 (m1) and Mid`+1
t1 (m1), and let d1 =

dst`+1
t1 (m1).

By using the lemma 4.9, there exists t′1 = t1 − d1 or t1 − (d1 + 1),
b1 = m1 − d1 or m1 − (d1 + 1), and b′1 = m1 + d1 or m1 + (d1 + 1)

such that LC`+1
t′1

(b1, b
′
1).

Notice that the case b1 = m1 − (d1 + 1) and b′1 = m1 + (d1 + 1) is
excluded, so b′1 − b1 = 2d1 or 2d1 + 1, but not 2d1 + 2.

Because LC`+1
t′1

(b1, b
′
1), by using the lemma 4.11, we have that:

either Brd`t′1(b1) ∧ ¬Brd
`
t′1
(b′1) ∧Mid`t′1(b

′
1) ∧ dst`t′1(b

′
1) = b′1 − b1

or ¬Brd`t′1(b1) ∧Mid`t′1(b1) ∧ Brd`t′1(b
′
1) ∧ dst`t′1(b1) = b′1 − b1
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We denote the border by b`1 and the middle by m`
1. In particular, we

have that dst`t′1(m
`
1) = b′1 − b1 = 2d1 or 2d1 + 1.

Let t2 and m2 such that Mid`+1
t2 (m2), and let d2 = dst`+1

t2 (m2).

By using the same arguments, we have that LC`+1
t′2

(b2, b
′
2), and at the

previous layer we denote the border by b`2 and the middle by m`
2, with

dst`t′2(m
`
2) = b′2 − b2 = 2d2 or 2d2 + 1.

Because ¬Brd`t′1(m
`
1) and Mid`t′1(m

`
1) and Mid`t′2(m

`
2), by using the

induction hypothesis IH `, we have that Mid`t′1(m
`
2) and dst`t′1(m

`
1) =

dst`t′1(m
`
2).

Because Mid`t′1(m
`
2) and Mid`t′2(m

`
2), by using the lemma 5.2 we have

that dst`t′1(m
`
2) = dst`t′2(m

`
2).

Therefore dst`t′1(m
`
1) = dst`t′1(m

`
2) = dst`t′2(m

`
2).

So, because dst`t′1(m
`
1) = 2d1 or 2d1+1 and dst`t′2(m

`
2) = 2d2 or 2d2+

1, by using the lemma 2.1 we have that d1 = d2.

Therefore dst`+1
t1 (m1) = d1 = d2 = dst`+1

t2 (m2).

It remains to prove that Mid`+1
t1 (m2).

Because ¬Brd`+1
t1 (m1) and Mid`+1

t1 (m1), by using the lemma 2.9 we
have that d2 = d1 = dst`+1

t1 (m1) ≥ 1.

So dst`t′1(m
`
2) = dst`t′2(m

`
2) = 2d2 or 2d2 + 1 ≥ 2.

Moreover, because dst`t′1(m
`
2) = dst`t′2(m

`
2) = b′2 − b2, where b2 and

b′2 are b`2 and m`
2 or the reverse, we have b`2 = m`

2 − dst`t′1(m
`
2) or

b`2 = m`
2 + dst`t′1(m

`
2).

Moreover, Mid`t′1(m
`
2) and Brd`t′2(b

`
2).

Therefore, by using the lemma 4.10, we have LC`+1
t′1

(b2, b
′
2).

We prove Mid`+1
t1 (m2) by case on the parity of b′2 − b2 :

– If b′2 − b2 is even, because b′2 − b2 = 2d2 or 2d2 + 1, we have
b′2 − b2 = 2d2 so b′2−b2

2 = d2.

Because b′2 − b2 is even, b′2 − b2 + 1 is odd. So, by using the
lemma 4.5, we have that Mid`+1

t′1+
b′2−b2

2

(
b2+b′2

2 ).

In that case (by using the previous results of the lemma 4.9), we
have (To do !) t′1 = t1−d1 and b2 = m2−d2 and b′2 = m2+d2,
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so :

t′1 +
b′2 − b2

2
= t′1 + d2 = t′1 + d1 = t1

b2 + b′2
2

=
(m2 − d2) + (m2 + d2)

2
=

2m2

2
= m2

Therefore Mid`+1
t1 (m2).

– If b′2 − b2 is odd, because b′2 − b2 = 2d2 or 2d2 + 1, we have
b′2 − b2 = 2d2 + 1 so b′2−b2+1

2 = d2 + 1.

Because b′2−b2 is odd, b′2−b2+1 is even. So, by using the lemma
4.6, we have that Mid`+1

t′1+
b′2−b2+1

2

(
b2+b′2−1

2 ) and Mid`+1

t′1+
b′2−b2+1

2

(
b2+b′2+1

2 ).

In that case (by using the previous results of the lemma 4.9), we
have (To do !) t′1 = t1 − (d1 + 1), so:

t′1 +
b′2 − b2 + 1

2
= t′1 + d2 + 1 = t′1 + d1 + 1 = t1

Morevover, there are two cases for b2 and b′2:

∗ b2 = m2 − (d2 + 1) and b′2 = m2 + d2. In that case:

b2 + b′2 + 1

2
=

(m2 − d2 − 1) + (m2 + d2) + 1

2
=

2m2

2
= m2

Therefore, because Mid`+1

t′1+
b′2−b2+1

2

(
b2+b′2−1

2 ), we have that

Mid`+1
t1 (m2).

∗ b2 = m2 − d2 and b′2 = m2 + (d2 + 1). In that case:

b2 + b′2 − 1

2
=

(m2 − d2) + (m2 + d2 + 1)− 1

2
=

2m2

2
= m2

Therefore, because Mid`+1

t′1+
b′2−b2+1

2

(
b2+b′2+1

2 ), we have that

Mid`+1
t1 (m2).

The remaining (To do !) marks in the previous lemma come from the fact
that the cases for the form of the Light Cones “may” not be the same (in
particular even or odd length) for the two middles. Maybe we should prove
that this is the case anyway because at a layer ` the Light Cones have the same
length ?
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Lemma 5.4 (Middles have max distance).

∀`tm,¬Brd`t(m) ∧Mid`t(m)⇒
(
∀c,dst`t(c) ≤ dst`t(m)

)
Proof. To do !

Lemma 5.5 (Cells with the same distance than a Middle are Middles).

∀`tm,¬Brd`t(m) ∧Mid`t(m)⇒
(
∀c,dst`t(c) = dst`t(m)⇒ Mid`t(c)

)
Proof. To do !

Lemma 5.6 (Middles appear when each cell is stable).

∀`tm,¬Brd`t(m) ∧Mid`t(m)⇒ ∀c,Sta`t(c)

Proof. To do !

6 SYNCHRONIZATION

Definition 6.1 (Output Field).

Out`0(c)
def
= False

Out`t+1(c)
def
= Brd`t(c− 1) ∧ Brd`t(c) ∧ Brd`t(c+ 1) (8)

Lemma 6.2 (The Border Field is True or False).

∀`tc,Brd`t(c) ∨ ¬Brd
`
t(c)

Proof. To do ! Using def or characterization of bool/Prop fields ?

Lemma 6.3 (The Output fires for every layer).

∀`tc,Out`t+1(c)⇒ Out`+1
t+1(c)

Proof. Let `, t and c. The hypothesis Out`t+1(c) implies (8) that Brd`t(c− 1)

and Brd`t(c) and Brd`t(c+ 1)

So (2) we have Brd`+1
t (c− 1) and Brd`+1

t (c) and Brd`+1
t (c+ 1).

Therefore (8) we proved Out`+1
t+1(c).

Lemma 6.4 (Three non-border Middles cannot be adjacent).

∀`tc,¬Brd`t(c) ∧Mid`t(c− 1) ∧Mid`t(c) ∧Mid`t(c+ 1)⇒ False
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Proof. We obtain a contradiction by case on t:

• If t = 0 then (5) Mid`0(c) is False.

• Else t = t′ + 1. By hypothesis ¬Brd`t′+1(c), so we can use the lemma
5.3 to prove that:

dst`t′+1(c− 1) = dst`t′+1(c) = dst`t′+1(c+ 1)

This distance will be denoted by d.

By using the lemma 2.6 on Mid`t′+1(c), we have that Sta`t′(c− 1) and
Sta`t′(c+ 1). So, by using the lemma 3.14 on both we have:

dst`t′(c− 1) = dst`t′+1(c− 1) = d

dst`t′(c+ 1) = dst`t′+1(c+ 1) = d

Because ¬Brd`t′+1(c) and Mid`t′+1(c), by using the lemma 2.9 we
have dst`t′+1(c) > 0. So (6):

dst`t′+1(c) = 1 +min
(
dst`t′(c− 1),dst`t′(c+ 1)

)
= 1 +min (d, d)

= 1 + d

which contradicts dst`t′+1(c) = d.

Lemma 6.5 (A non-border Middle adjacent to a Border has a distance = 1).

∀`tc,¬Brd`t(c) ∧Mid`t(c) ∧
(
Brd`t(c− 1) ∨ Brd`t(c+ 1)

)
⇒ dst`t(c) = 1

Proof. We prove the result by case on t:

• If t = 0 then (5) Mid`0(c) is False, so we get a contradiction.

• Else t = t′ + 1. Because ¬Brd`t′+1(c) and Mid`t′+1(c), by using the
lemma 2.9 we have dst`t′+1(c) > 0. So (6):

dst`t′+1(c) = 1 +min
(
dst`t′(c− 1),dst`t′(c+ 1)

)
But

(
Brd`t′+1(c− 1) ∨ Brd`t′+1(c+ 1)

)
, so by using the lemma 2.5

we have
(
dst`t′+1(c− 1) = 0 ∨ dst`t′+1(c+ 1) = 0

)
, and by using the

lemma 3.13 we have
(
dst`t′(c− 1) = 0 ∨ dst`t′(c+ 1) = 0

)
.

Therefore, min
(
dst`t′(c− 1),dst`t′(c+ 1)

)
= 0, and dst`t′+1(c) = 1.
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Theorem 6.6 (The Output Field is synchronized).

∀`tc,Out`t(c)⇒ ∀c′,Out`t(c
′)

Proof. We prove ∀t`c,Out`t(c)⇒ ∀c′,Out`t(c
′) by case on t:

• If t = 0, let ` and c. By (8), Out`0(c) is False, so the implication holds.

• Else, t = t′ + 1 and we prove ∀`c,Out`t′+1(c) ⇒ ∀c′,Out`t′+1(c
′) by

induction on `:

– Out0t′+1(c) implies (8) Brd0t′(c− 1) and Brd0t′(c) and Brd0t′(c+

1), so (2) we have c − 1 = 1 ∨ c − 1 = n and c = 1 ∨ c = n

and c+ 1 = 1 ∨ c+ 1 = n, which leads to a contradiction (three
variables with distinct values, but only two available values).

– We assume the induction hypothesis:

∀c,Out`t′+1(c)⇒ ∀c′,Out`t′+1(c
′) (IH `)

Let c. The hypothesis Out`+1
t′+1(c) implies (8) that Brd`+1

t′ (c− 1)

and Brd`+1
t′ (c) and Brd`+1

t′ (c+ 1).
For each cell c′ ∈ {c − 1, c, c + 1}, by using the lemma 6.2 we
have Brd`t′(c

′) ∨ ¬Brd`t′(c′). But because Brd`+1
t′ (c′) implies

(2) that Brd`t′(c
′) ∨ Mid`t′(c

′), we have two cases: Brd`t′(c
′) or

¬Brd`t′(c′) ∧Mid`t′(c
′).

We prove ∀c′,Out`+1
t′+1(c

′) for the eight possible cases:

∗ If Brd`t′(c−1) and Brd`t′(c) and Brd`t′(c+1) then (8) Out`t′+1(c).
So, by using IH ` we have for every c′ that Out`t′+1(c

′).
Therefore, by using the lemma 6.3, we have Out`+1

t′+1(c
′).

∗ If Mid`t′(c− 1) and Mid`t′(c) and Mid`t′(c+ 1), we obtain a
contradiction by using the lemma 6.4.
∗ The other cases are :
· Brd`t′(c− 1) and Brd`t′(c) and Mid`t′(c+ 1)

· Brd`t′(c− 1) and Mid`t′(c) and Brd`t′(c+ 1)

· Brd`t′(c− 1) and Mid`t′(c) and Mid`t′(c+ 1)

· Mid`t′(c− 1) and Brd`t′(c) and Brd`t′(c+ 1)

· Mid`t′(c− 1) and Brd`t′(c) and Mid`t′(c+ 1)

· Mid`t′(c− 1) and Mid`t′(c) and Brd`t′(c+ 1)
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In every case, there exists a cell m ∈ {c − 1, c, c + 1} with
is a middle, not a border, and is adjacent to a border. So, by
using the lemma 6.5 we have dst`t′(m) = 1.
Let c′ be a cell. By using the lemma 5.4 we have that:

dst`t′(c
′) ≤ dst`t′(m) = 1

We prove that Brd`+1
t′ (c′) by case on dst`t′(c

′):

· In the case dst`t′(c
′) = 0, by using the lemma 5.6 we

have that Sta`t′(c
′), so by using the lemma 2.8 we have

that Brd`t′(c
′).

· If dst`t′(c
′) = 1, by using the lemma 5.5 we have that

Mid`t′(c
′).

Therefore, in every case Brd`+1
t′ (c′).

We proved it for every cell c′, so we have Brd`+1
t′ (c′−1) and

Brd`+1
t′ (c′) and Brd`+1

t′ (c′ + 1), therefore Out`+1
t′+1(c

′).
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