
Proving Formally a Field-Based FSSP Solution

Yoann Marquer, Luidnel Maignan, Jean-Baptiste Yunès

Abstract

In the research domain of cellular automata algorithmics, the firing squad synchroniza-
tion problem is a famous problem that has been solved in many ways. However, very few
of these solutions have a detailed formal proof suitable for proof assistant and for human
understanding. The reason is that the correctness of those solutions is more easily seen from
a high level point of view and from the way the solution has been constructed than from the
actual formal description of the constructed solution. The field-based approach consists in
giving a formal description of a new high-level and modular description and the reduction
process down to the final low-level solution. The decomposition in modules are natural
from a design point of view and is a precise counterpart of the previous informal high-level
description. This research report aims to present an understandable proof of correctness of
the high-level field-based solution suitable for an implementation in Coq.

1 Introduction

This research report presents a formal proof to be implemented in Coq for a high-level solution
to the multi-general one dimensional firing squad synchronization problem. The problem is
to design a cellular automaton 〈Σ, δ : Σ3 → Σ〉 with three special states q, g, f ∈ Σ called
the quiescent, the general and the firing state respectively with the following synchronization
property. Given a line of cells of arbitrary length with some cells in the general state and all
the other cells in the quiescent states, the firing state is netherthless reached by all cells of the
line at the exact same time. This has to be the case despite the fact that δ is required to have
δ(s1, q, s2) = q whenever s1, s2 ∈ {⊥, q}, which causes an initial asynchronous starting of the
cells. Here ⊥ is a special state representing the absence of some neighbors at each extremity
of the line of cells (we discuss this further in the appendix p.20). For more information on this
problem definition and variation, one can consult [?].

TODO: Provide a list of existing solutions having a formal proof of correctness and discuss
them. In particular, discuss the Mazoyer’s solutions and their proofs in Coq [?, ?, ?].

We give at the section 2 p.2 an example of evolution. A cell is labeled by a number between
1 and n. The generals are the cells awaken at the date t = 0, and at every date t the local
informations of a cell c and its neighbors determine the next state of c at the date t + 1. The
synchronization is obtained by recursion on the layers. At the layer ` = 0 the borders are the
cells 1 and n. At every layer ` the middles of the regions are computed during the evolution,
and become borders for the layer `+ 1. Therefore, the space is split in regions, and subregions,
and so on until every cell become a border. Then, they fire together.

These local informations are formalized as different propositional fields at the section 3 p.4,
which define the rules of the evolution:

• Inpt(c) denotes that the cell c is awaken at the date t.

• Brd`
t(c) denotes that at the layer ` the cell c knows at the date t that it is a border of a

region.

1

• Ins`t(c) denotes that at the layer ` the cell c knows at the date t that it is (strictly) inside
a region.

• dst`t(c) denotes that at the layer ` the cell c knows at the date t that it is at least at a
distance ≥ d from the borders.

• Sta`t(c) denotes that at the layer ` the cell c knows at the date t that its state will not
change during the following dates.

• Mid`
t(c) denotes that at the layer ` the cell c knows at the date t that it is a middle of a

region.

• Out`t(c) denotes that at the layer ` the cell c knows at the date t that it can fire.

Most of the lemmas and propositions highlight that the fields compute what they are supposed
to. For example, we prove at the lemma B.5 p.22 that the border and inside field are exclusive,
and at the lemma B.6 p.23 that a border has a distance d = 0.

Until every cell has enough local informations to deduce that globally every cell can fire at
the the same time, the fields accumulate more and more local information over time. This is
illustrated by the notion of monotonicity for the fields, which means that if the property holds
for a given time t, then it holds for every t′ ≥ t. We prove in the appendix at the section C p.25
that for a given layer ` the fields are monotone.

An other core notion of the paper is the concept of Light Cone, formalized by the field
LC`

t(b1, b2) which denotes that the cells b1 and b2 are borders, and that at the date t + 1 every
cell (strictly) between b1 and b2 is inside. In a sense, this is a spatiotemporal version of the
strictly spatial notion of region presented in the references. We prove in the section 5 p.11 that
the Light Cones are the global counterpart of the local middles of the regions. More precisely,
we prove at the lemma 5.9 p.14 that these information are necessary, and at the corollaries 5.5
p.12 and 5.6 p.13 that these informations are sufficient, to compute the middle(s) of the region.

The Light Cones help us prove in the section 6 p.15 the proposition 6.3 p.15 stating that the
middles of the regions appear at the same time with the same distance, in order to prove the
synchronization.

The purpose of this research report is to prove that the synchronization is effective. In our
framework, the proof is done at the theorem 7.4 p.17, stating that for every layer `, for every
date t and every cell c, if Out`t(c) (ie the cell fires) then for every cell c′ we have Out`t(c

′) (ie
every cell fire).

Finally, we discuss some issues in the conclusion p.19. We let the most technical proofs to
the appendix, and at the section F p.48 we provide a code in Coq of the definitions and some
lemmas.

+ biblio dans tout l’article

2 Example

Before defining formally the fields, we introduce them in an example of execution at the table 1.
Given one or several generals, the aim is to ensure that every cell will fire at the same time.
In this example, there are seven cells. Each cell is represented by a column, and each line

corresponds to a date. So, the table should be read line by line, from top to bottom.
The white cells represent the cells which are not awaken. At t = 0, only the fifth cell is

awaken: this is the general. At each step, each cell awakes its neighbors if they are not already
awaken.

2

cells 1 2 3 4 5 6 7

time

t = 0 0

t = 1 1 1 1

t = 2 1 1 2 1 0

t = 3 1 1 2 2 1 0

t = 4 0 1 2 2 2 1 0

t = 5 0 1 2 3 2 1 0

t = 6 0 1 2 3 2 1 0

t = 7 0 1 2 3 2 1 0

t = 8 0 1 2 3 2 1 0

t = 9 0 1 2 3 2 1 0

t = 10 0 1 2 3 2 1 0

Table 1: Layer ` = 0

When a cell is awaken, it begins to compute its possible distance to the borders. Because
the evolution is given only by local rules, this computation must be done by a cell only by looking
to its neighbors. If a cell is a border, its distance to the borders is 0, else it is 1 + min(d`, dr),
where d` and dr are the distance of its left and right neighbors at the previous step. Notice that
the distance in each cell is increasing over time.

The gray cells represent the cells which are able to know that they have computed the right
distance to the borders. A border knows that it has a distance 0 to the borders, and a cell which
has a distance 1 + d and a stable neighbor with a distance d becomes stable.

The cells form a region, delimited by the borders c = 1 and c = 7. The middle of this region
is the cell c = 4. This cell knows that it is a middle when its neighbors are stable and have a
lower distance to th borders. The distance of the borders and the middles are written in bold
to highlight the region. After t = 7, the distance are stable and the middle has appeared, so
nothing change.

Our aim is to divide the region in half, then divide the subregions in half, and so on until
every cell is a border. Then, they will fire at the same time.

In order to do that, we introduce the notion of layers. The previous computations have been
done for the layer ` = 0. In the next layer (` = 1), we assume that a cell knows that it is a
border when it knows that it is a border or a middle at the previous layer (` = 0).

Moreover, a cell will compute its distance to the borders only if it knows it is a border or is
inside the region. In other word, a cell is awaken if and only if it is a border or inside. More
precisely, a cell becomes inside at a layer ` > 0 if at the previous layer it was inside and stable,
and had at the previous step a neighbor with a greater distance.

Therefore, the execution at the layer ` = 1 is given at the table 2.
Notice that because there is an even number of cells in the two regions of the layer ` = 1,

two middles appear.

3

cells 1 2 3 4 5 6 7

time

t = 0

t = 1

t = 2 0

t = 3 1 0

t = 4 0 1 0

t = 5 0 1 1 0

t = 6 0 1 1 1 1 0

t = 7 0 1 1 0 1 1 0

t = 8 0 1 1 0 1 1 0

t = 9 0 1 1 0 1 1 0

t = 10 0 1 1 0 1 1 0

cells 1 2 3 4 5 6 7

time

t = 0

t = 1

t = 2 0

t = 3 0

t = 4 0 0

t = 5 0 0

t = 6 0 0

t = 7 0 0 0

t = 8 0 0 0

t = 9 0 0 0 0 0 0 0

t = 10 f f f f f f f

Table 2: Layers ` = 1 and ` = 2

At the layer ` = 2, every cell become a border at t = 9. So, at t = 10, each cell knows that
its neighbors and itself are borders, and fires.

The number of layers is potentially infinite, but notice that every layer ` ≥ 2 is the same
than the layer ` = 2. This, and the fact that the distance fields has a maximum value depending
of the total number of cells, implies that the automaton described in this paper has an infinite
number of state. But it is proven in [?] that these states can be finitely implemented, so we will
not discuss this further in this paper.

3 Fields

For the Coq implementation, the fields are computed using booleans but the results will be
proven using propositions as recommanded in Software Foundations (Benjamin Pierce).

The definition are simplified (quantifier elimination) for the implementation, as opposed to
the paper (cite finitization).

We assume in this paper that the problem is one-dimensional, and the cells are labeled from
1 to n.

Axiom 3.1 (At least three cells).
n ≥ 3

The boolean function gen is given by the evolution, and indicates the position of the gen-
eral(s) at the beginning of the execution.

Axiom 3.2 (At least one cell is a general).

∃c, 1 ≤ c ≤ n ∧ gen(c) = true

4

In the following definitions, we assume that “ or ”, “ and ” and “if . . . then . . . else . . . ” are
the standard booleans operations.

The input field indicates which cells are awaken at a particular time t. For t = 0, only the
generals are awaken, and at each step an awaken cell awakes its neighboring cells:

Definition 3.3 (Input Field).

inp0(c)
def
= gen(c)

inpt+1(c)
def
= inpt(c− 1) or inpt(c) or inpt(c+ 1)

Inp0(c)
def
= gen(c) = true

Inpt+1(c)
def
= Inpt(c− 1) ∨ Inpt(c) ∨ Inpt(c+ 1) (1)

Like this definition, the boolean fields will be written with lowercase, and the proposition
fields in uppercase. The Coq file at the section F p.48 contains already the proof of equivalence,
so they will be admitted in this report.

Lemma 3.4 (Equivalence for Inp).

∀tc, Inpt(c)⇔ inpt(c) = true

For the sake of clarity, the = and < will not be distinguished from their boolean equivalent,
as it is in Coq. The recursive definition of the proposition fields is given at the table 3, where
dst is an integer field computed along the booleans fields.

Remark. Notice that if c = 1 then the cell c− 1 is not in our space, neither c+ 1 for c = n.
Therefore, the definition of the fields should be modified as in [?] to take a proper neighbor-

hood into account.
We discuss in the appendix p.20 what is required to be modified in the formal definition of

the fields for the cells c ∈ {1, n}, but we keep here the non-modified version because it is simpler
and it corresponds to our implementation in Coq p.48.

Coq cannot guess how to compute such an intricated recursion, so the recursive definitions
of the booleans fields must be split into abstract parts for different given levels:

1. We use the input field to define at the table 4 the border and inside fields at the level 0.

2. Then, we assume that the border and inside fields are defined at the level `, and we define
at the table 5 the distance, stability and middle fields at that level.

3. Finally, we use the fields defined at the level ` to define at the table 6 the border and inside
fields for the level `+ 1.

The boolean fields should be defined by the mutual recursion given at the table 7, but Coq
cannot guess the decreasing argument.

So, instead, we substitute the schemata at the table 8 to obtain only one mutual recursion
for the border and inside fields and thereafter define the other fields, where f(g1, . . . , gk) denotes
the field (t, c) 7→ f(t, c, g1, . . . , gk).

And this time, Coq is able to compute the fields. Moreover we prove in Coq at the section
F p.48 the equivalence between the boolean and proposition fields, and the specification of dst:

5

Brd0
t (c)

def
= Inpt(c) ∧ (1 = c ∨ c = n)

Brd`+1
t (c)

def
= Brd`

t(c) ∨Mid`
t(c) (2)

Ins0t (c)
def
= Inpt(c) ∧ 1 < c ∧ c < n

Ins`+1
0 (c)

def
= False

Ins`+1
t+1(c)

def
= Ins`t+1(c) ∧ Sta`t+1(c)

∧
(

dst`t+1(c) < dst`t(c− 1) ∨ dst`t+1(c) < dst`t(c+ 1)
)

(3)

Sta`0(c)
def
= Brd`

0(c)

Sta`t+1(c)
def
= Brd`

t+1(c)

∨
(

dst`t+1(c) = 1 + dst`t(c− 1) ∧ Sta`t(c− 1)
)

∨
(

dst`t+1(c) = 1 + dst`t(c+ 1) ∧ Sta`t(c+ 1)
)

(4)

Mid`
0(c)

def
= False

Mid`
t+1(c)

def
=

(
dst`t+1(c) > max

(
dst`t(c− 1),dst`t(c+ 1)

)
∧ Sta`t(c− 1) ∧ Sta`t(c+ 1)

)
∨
(

dst`t+1(c) = max
(

dst`t(c− 1),dst`t(c+ 1)
)

∧ Sta`t(c− 1) ∧ Sta`t(c) ∧ Sta`t(c+ 1)

)
(5)

Table 3: Formal Definition of the Fields

brd0(t, c)
def
= inpt(c) and (1 = c or c = n)

ins0(t, c)
def
= inpt(c) and 1 < c and c < n

Table 4: Border and Inside Fields at the Layer 0

6

dstL(0, c, insL)
def
= 0

dstL(t+ 1, c, insL)
def
= if insL(t+ 1, c)

then 1 + min
(

dstL(t, c− 1),dstL(t, c+ 1)
)

else 0

staL(0, c,brdL,dstL)
def
= brdL(0, c)

staL(t+ 1, c,brdL,dstL)
def
= brdL(t+ 1, c)

or
(

dstL(t+ 1, c) = 1 + dstL(t, c− 1) and staL(t, c− 1)
)

or
(

dstL(t+ 1, c) = 1 + dstL(t, c+ 1) and staL(t, c+ 1)
)

midL(0, c,dstL, staL)
def
= false

midL(t+ 1, c,dstL, staL)
def
=

(
dstL(t+ 1, c) > max

(
dstL(t, c− 1),dstL(t, c+ 1)

)
and staL(t, c− 1) and staL(t, c+ 1)

)
or

(
dstL(t+ 1, c) = max

(
dstL(t, c− 1),dstL(t, c+ 1)

)
and staL(t, c− 1) and staL(t, c) and staL(t, c+ 1)

)

Table 5: Distance, Stability and Middle Fields at the Layer `

brdS(t, c,brdL,midL)
def
= brdL(t, c) or midL(t, c)

insS(0, c, insL,dstL, staL)
def
= false

insS(t+ 1, c, insL,dstL, staL)
def
= insL(t+ 1, c) and staL(t+ 1, c)

and
(

dstL(t+ 1, c) < dstL(t, c− 1)

or dstL(t+ 1, c) < dstL(t, c− 1)
)

Table 6: Border and Inside Fields at level `+ 1

Lemma 3.5 (Equivalence between Boolean and Proposition Fields).

∀`tc,Brd`
t(c)⇔ brd`

t(c) = true

∀`tc, Ins`t(c)⇔ ins`t(c) = true

∀`tc,Sta`t(c)⇔ sta`t(c) = true

∀`tc,Mid`
t(c)⇔ mid`

t(c) = true
7

brd0
t (c)

def
= brd0(t, c)

brd`+1
t (c)

def
= brdS(t, c,brd`,mid`)

ins0t (c)
def
= ins0(t, c)

ins`+1
t (c)

def
= insS(t, c, ins`,dst`, sta`)

dst`t(c)
def
= dstL(t, c, ins`)

sta`t(c)
def
= staL(t, c,brd`,dst`)

mid`
t(c)

def
= midL(t, c,dst`, sta`)

Table 7: Mutual Recursion for the Boolean Fields (first try)

brd0 def
= brd0

brd`+1 def
= brdS

(
brd`,midL

(
dstL

(
ins`

)
, staL

(
brd`,dstL

(
ins`

))))

ins0
def
= ins0

ins`+1 def
= insS

(
ins`,dstL

(
ins`

)
, staL

(
brd`,dstL

(
ins`

)))

dst`
def
= dstL(ins`)

sta`
def
= staL(brd`,dst`)

mid` def
= midL(dst`, sta`)

Table 8: Mutual Recursion for the Boolean Fields (second try)

Lemma 3.6 (Distance Field).

dst`0(c) = 0

Ins`t+1(c)⇒ dst`t+1(c) = 1 + min
(

dst`t(c− 1),dst`t(c+ 1)
)

¬ Ins`t+1(c)⇒ dst`t+1(c) = 0 (6)

8

In the rest of the paper, we will use only the axioms 3.1 p.4 (there exists at least three cells)
and 3.2 p.4 (there exists at least one general), and the equations (1) for the input field, (2) for
the border field, (3) for the inside field, (4) for the stable field, (5) for the middle field, and (6)
for the distance field.

4 Framework

In the appendix at the section B p.20 we detail technical lemmas about the fields. Their proofs
are very detailed and written in a Coq style, in order to be implemented. In fact, some (but not
all) have been at the section F p.48.

We prove at the lemma B.5 p.22 that the border and inside fields are exclusive, which means
more formally that:

∀`tc,Brd`
t(c)⇒ Ins`t(c)⇒ False

We prove at the lemma B.7 p.23 that the neighbors of a middle are stable, and at the lemma
B.8 p.23 that a middle itself is stable too:

∀`tc,Mid`
t+1(c)⇒ Sta`t(c− 1) ∧ Sta`t(c+ 1)

∀`tc,Mid`
t(c)⇒ Sta`t(c)

By the stable field equation (4), a border is stable. Therefore, by using the lemmas B.6 p.23
and B.9 p.24 we have the following equivalence:

∀`tc,Brd`
t(c)⇔ Sta`t(c) ∧ dst`t(c) = 0

Finally, the lemma B.11 p.24 states that at the layer 0, every cell ends up being awaken:

∃t,∀c, Inpt(c)

At the section C p.25 of the appendix, we prove the monotonicity of the fields, which means
that if the property holds for a given time t, then it holds for every t′ ≥ t. As for the section
B, The proof are very detailed, and some (but not all) have been implemented in Coq at the
section F p.48.

The proof of the monotonicity of the input field derives directly from the input field equation
(1), so we have the lemma C.1 p.25:

∀tc, Inpt(c)⇒ (∀t′, t′ ≥ t⇒ Inpt′(c))

The other fields are defined for each layer by mutual recursion, so the proof must be split
into several parts.

Firstly, we prove the monotonicity of the border and inside fields at the layer ` = 0.
Secondly, we prove that if the border and inside fields are monotone at the layer `, then the

other fields are monotone at the layer ` too and, moreover, that the border and inside fields are
monotone at the layer `+ 1.

1. For the layer ` = 0, if Brd0
t (c) then according to the border field equation (2), we have

Inpt(c) and c = 1 or n. But, according to the lemma C.1, the input field is monotone, so
we have Inpt+1(c) and c = 1 or n. Therefore, we have Brd0

t+1(c).

In the same way, if Ins0t (c) then according to the border field equation (3), we have Inpt(c)
and 1 < c < n. But, according to the lemma C.1, the input field is monotone, so we have
Inpt+1(c) and 1 < c < n. Therefore, we have Ins0t+1(c).

9

2. Let ` be a layer. We assume that the border and inside fields are monotone at the layer `:

∀tc,Brd`
t(c)⇒ Brd`

t+1(c)

∀tc, Ins`t(c)⇒ Ins`t+1(c)

Then, we prove in the lemma C.2 p.25 that the distance field is increasing at the layer `:

∀tc,dst`t(c) ≤ dst`t+1(c)

Then, we prove at the lemma C.3 p.25 that a cell which is stable at the layer ` has a
constant distance:

∀tc,Sta`t(c)⇒ dst`t(c) = dst`t+1(c)

Then, we prove at the lemma C.4 p.26 that the stable field is monotone at the layer `:

∀tc,Sta`t(c)⇒ Sta`t+1(c)

Then, we prove at the lemma C.5 p.28 that the middle field is monotone at the layer `:

∀tc,Mid`
t(c)⇒ Mid`

t+1(c)

Then, we prove at the lemma C.6 p.29 that the border field is monotone at the layer `+ 1:

∀tc,Brd`+1
t (c)⇒ Brd`+1

t+1(c)

Then, we prove at the lemma C.7 p.30 that the border field is monotone at the layer `+ 1:

∀tc, Ins`+1
t (c)⇒ Ins`+1

t+1(c)

Therefore, we proved that the fields are monotone at every layer:

∀`tc,Brd`
t(c)⇒

(
∀t′, t′ ≥ t⇒ Brd`

t′(c)
)

∀`tc, Ins`t(c)⇒
(
∀t′, t′ ≥ t⇒ Ins`t′(c)

)
∀`tc,Sta`t(c)⇒

(
∀t′, t′ ≥ t⇒ Sta`t′(c)

)
∀`tc,Mid`

t(c)⇒
(
∀t′, t′ ≥ t⇒ Mid`

t′(c)
)

∀`tct′, t′ ≥ t⇒ dst`t′(c) ≥ dst`t(c)

∀`tc,Sta`t(c)⇒
(
∀t′, t′ ≥ t⇒ dst`t′(c) = dst`t(c)

)

10

cells 1 2 3 4 5 6 7

time

t = 0 0 0

t = 1 0 1 1 0

t = 2 0 1 1 1 1 0

t = 3 0 1 1 2 1 1 0

t = 4 0 1 2 2 2 1 0

t = 5 0 1 2 3 2 1 0

Table 9: A light cone for 7 cells.

5 Light Cones

What are the necessary informations to produce a middle ?
The information travels from cell to cell at the speed of one cell per step, which is in a way

the light speed for the automaton. So, the necessary informations required to produce a middle
must come from the borders, travel from cell to cell in diagonal, and attain the middle(s) at the
step it appears.

At the table 9, we give an example of a “worst” case, where the middle of the automaton has
little to no information during most of the execution, because the generals are at the cells 1 and
7. The middle appears at the step t = 5, and then the evolution does not change anymore. The
informations leading to the middle at t = 5 traveled from the entire region at t = 2, which we
call the Light Cone of the middle.

Notice that some cells may not be awaken at t = 2, but they are all border or inside after the
first step of the Light Cone.

So, in this example it is true that at the layer ` = 0 and the date t = 2 the region between
the borders 1 and 7 is a Light Cone for the middle to come. This will be denoted by LC0

2(1, 7)
in the following definition:

Definition 5.1 (Light Cones).

LC`
t(b1, b2)

def
= b1 + 2 ≤ b2 ∧ Brd`

t(b1) ∧ Brd`
t(b2)

∧
(
∀c, b1 < c < b2 ⇒ Ins`t+1(c)

)
(7)

The condition b1 + 2 ≤ b2 ensures not only that b1 < b2, but also that there is a cell between
them. This ensures that the boundaries between light cones are not light cones themselves.

Moreover, this excludes the regions of the final layer (which contains only two cells) to be
called light cones, so the results of this section are only for the phase transition. And indeed, the
final layer is the first during the execution when a region alone cannot determine the middle(s),
because a middle requires at least three cells to appear, and not only two.

Corollary 5.2 (Light Cone at layer 0).

∃t,LC0
t (1, n)

11

Proof. Firstly, by axiom 3.1, n ≥ 3.
Secondly, by using the lemma B.11 there exists t such that for every cell c, Inpt(c). So:

• We have (2) that Brd0
t (1) and Brd0

t (n)

• We have (3) for every 1 < c < n that Ins0t (c). So, by using the corollary C.10, for every
1 < c < n we have that Ins0t+1(c).

Therefore (7) LC0
t (1, n).

Remark. In the following, a
2 will denote the floor function of the half : the half of a if a is even,

and the half of a− 1 if a is odd.

As in the section 4, the proofs of the following results are very detailed and written in a Coq
style, in order to be implemented. Therefore, for sake of clarity, we will only write and comment
the results in this section, and leave the non-trivial proofs to the appendix at the section D p.33.

At the table 9, notice that the cells in yellow are stable, and that the distance increases from
the border with d = 0 to the middle with d = b2−b1

2 . Moreover, if the Light Cone began at the
date t in the borders, then at the date t+ d every cell inside the Light Cone has a distance ≥ d:

Proposition 5.3 (Running of a Light Cone).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀ 0 ≤ d ≤ b2 − b1

2
,

dst`t+d(b1 + d) = d ∧ Sta`t+d(b1 + d)

∧dst`t+d(b2 − d) = d ∧ Sta`t+d(b2 − d)

∧
(
∀ b1 + d ≤ c ≤ b2 − d,dst`t+d(c) ≥ d

)
Because we proved at the corollary C.11 p.32 that the stable field is monotone, and at the

corollary C.14 p.32 that a cell which is stable has a constant distance over time, we can deduce
from the previous proposition the state of the entire region when the middle appears at t+ b2−b1

2 :

Corollary 5.4 (End of a Light Cone).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀ 0 ≤ d ≤ b2 − b1

2
,

dst`
t+

b2−b1
2

(b1 + d) = d ∧ Sta`
t+

b2−b1
2

(b1 + d)

∧dst`
t+

b2−b1
2

(b2 − d) = d ∧ Sta`
t+

b2−b1
2

(b2 − d)

Remark. Notice that for a Light Cone LC`
t(b1, b2), b2 − b1 + 1 is the number of cells forming the

Light Cone, boundaries included.

In our example at the table 9, the region has 7 − 1 + 1 = 7 an odd number of cells, so one
middle appeared.

Corollary 5.5 (Middle of an odd Light Cone).

∀`tb1b2,LC`
t(b1, b2) ∧ b2 − b1 + 1 odd

⇒ Mid`

t+
b2−b1

2

(
b1 + b2

2

)

12

But remember that in our example at the table 2, there was an even number of cells in the
two regions of the layer ` = 1, so two middles appeared:

Corollary 5.6 (Middles of an even Light Cone).

∀`tb1b2,LC`
t(b1, b2) ∧ b2 − b1 + 1 even

⇒ Mid`

t+
b2−b1+1

2

(
b1 + b2 − 1

2

)
∧Mid`

t+
b2−b1+1

2

(
b1 + b2 + 1

2

)
Remark. Notice that in every case, we have Mid`

t+
b2−b1+1

2

(
b1+b2

2

)
and Mid`

t+
b2−b1+1

2

(
b1+b2+1

2

)
,

but we thought the presentation clearer by separating both cases.

The main purpose of the concept of Light Cone is to help proving results about middles at
the section 6 p.15. As an example, in order to prove results like the proposition 6.3 p.15, we
prove that the other cells of a Light Cone are not middles:

Lemma 5.7 (The other cells of a Light Cone are not Middles).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀t′ ≥ t+

b2 − b1
2

,∀c,(
b1 ≤ c <

b1 + b2
2

∨ b1 + b2 + 1

2
< c ≤ b2

)
⇒ ¬Mid`

t′+1(c)

The previous lemma can be generalized by using the monotonicity of the middle field:

Corollary 5.8 (The other cells of a Light Cone are not Middles).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀t′c,(

b1 ≤ c <
b1 + b2

2
∨ b1 + b2 + 1

2
< c ≤ b2

)
⇒ ¬Mid`

t′(c)

Proof. The proof is made by case on t′:

• If t′ ≤ t+ b2−b1
2 , we prove ¬Mid`

t′(c) by contradiction.

We assume that Mid`
t′(c). So, by using the lemma C.12 we have that Mid`

t+
b2−b1

2 +1
(c).

But, by using the previous lemma with t + b2−b1
2 , we have that ¬Mid`

t+
b2−b1

2 +1
(c), hence

the contradiction.

• If t′ ≥ t+ b2−b1
2 + 1

By using the previous lemma with t′ − 1 ≥ t+ b2−b1
2 , we have that ¬Mid`

t′(c).

In the following, we call a true middle a cell which is a middle but not a border. Indeed, as
opposed to the border and inside fields, these fields are not exclusive. But a cell can only be a
middle and a border during the final layer, so the two fields are exclusive during the transition
phase.

In a sense, the following lemma is the converse of the corollaries 5.5 and 5.6:

13

Lemma 5.9 (Each true Middle comes from a Light Cone).

∀`tm,¬Brd`
t(m) ∧Mid`

t(m)

⇒ LC`
t−d(m− d,m+ d)

∨LC`
t−(d+1)(m− (d+ 1),m+ d)

∨LC`
t−(d+1)(m− d,m+ (d+ 1))

where d = dst`t(m)

We use the previous lemma to prove that if a (true) middle appears at the layer ` and the
date t, then it determines the apparition of a Light Cone at the layer `+ 1 and at the same date:

Corollary 5.10 (A Middle induces a new Light Cone).

∀`tmd,Mid`
t(m) ∧ dst`t(m) = d ∧ d ≥ 2

⇒ ∀t′,
(

Brd`
t′(m− d)⇒ LC`+1

t (m− d,m)
)

∧
(

Brd`
t′(m+ d)⇒ LC`+1

t (m,m+ d)
)

This allows us to prove the following proposition stating that a Light Cone at a layer ` will
be split in half by the middle field, hence determining the formation of two Light Cones at the
layer `+ 1:

Proposition 5.11 (A Light Cone is split in the Middle).

∀`tb1b2,LC`
t(b1, b2) ∧ b2 − b1 + 1 ≥ 5

⇒ LC`+1

t+
b2−b1+1

2

(
b1,

b1 + b2
2

)
∧ LC`+1

t+
b2−b1+1

2

(
b1 + b2 + 1

2
, b2

)
Proof. Let `, t, b1 and b2 such that LC`

t(b1, b2) and b2 − b1 + 1 ≥ 5.
According to the corollary 5.5 p.12 (if b2−b1+1 is odd) or the corolloray 5.6 p.13 (if b2−b1+1

is even), we have Mid`

t+
b2−b1+1

2

(
b1+b2

2

)
and Mid`

t+
b2−b1+1

2

(
b1+b2+1

2

)
.

Moreover, according to the corollary 5.4 p.12 for d = b2−b1
2 (and eventually the corollary C.14

p.32), we have:

dst`
t+

b2−b1+1
2

(
b1 + b2

2

)
=
b2 − b1

2
= dst`

t+
b2−b1+1

2

(
b1 + b2 + 1

2

)
Notice that the hypothesis b2 − b1 + 1 ≥ 5 implies that b2−b1

2 ≥ 2.

So, because LC`
t(b1, b2) implies that Brd`

t(b1) and Brd`
t(b2), we can apply the corollary 5.10

on the middle(s) to prove the result.

Finally, to help proving the proposition 6.3 p.15, we conclude this section with a lemma
stating that a Light Cone at the layer `+ 1 with borders b1 and b2 determines at the layer ` that
one was a border, and the other was a true middle:

Lemma 5.12 (One Brd and one Mid at the previous layer of a Light Cone).

∀`tb1b2,LC`+1
t (b1, b2)

⇒
(

Brd`
t(b1) ∧ ¬Brd`

t(b2) ∧Mid`
t(b2) ∧ dst`t(b2) = b2 − b1

)
∨
(
¬Brd`

t(b1) ∧Mid`
t(b1) ∧ Brd`

t(b2) ∧ dst`t(b1) = b2 − b1
)

14

6 Middles

As in in the previous section, the proofs of the following results are very detailed and written
in a Coq style, in order to be implemented. Therefore, for sake of clarity, we will only write
and comment the results in this section, and leave the non-trivial proofs to the appendix at the
section E p.42.

The aim of this section is to prove the proposition 6.3, which is necessary to ensure the
synchronization of the cells (theorem 7.4 p.17). In order to alleviate the demonstration, we
first prove two technical lemmas:

Lemma 6.1 (Paired Middles appear at the same time with the same distance).

∀`t1t2m1m2,Mid`
t1(m1) ∧Mid`

t2(m2) ∧ (m2 = m1 + 1 ∨m1 = m2 + 1)

⇒ Mid`
t1(m2) ∧ dst`t1(m1) = dst`t1(m2)

Proof. The proof is made p.43 by using the monotonicity of the fields.

Lemma 6.2 (A Middle has the same distance over time).

∀`t1t2m,Mid`
t1(m) ∧Mid`

t2(m)⇒ dst`t1(m) = dst`t2(m)

Proof. Two cases t1 ≤ t2 and t2 ≤ t1. In every case, a middle is stable, therefore the distance is
the same.

Proposition 6.3 (Middles appear at the same time with the same distance).

∀`t1m1,¬Brd`
t1(m1) ∧Mid`

t1(m1)

⇒
(
∀t2m2,Mid`

t2(m2)⇒ Mid`
t1(m2) ∧ dst`t1(m1) = dst`t1(m2)

)
Proof. The proposition is proven p.44, but we sketch the proof here to highlight how the Light
Cones are used. The proof is made by induction on the layer `:

• At the layer ` = 0, according to the lemma 5.2, there exists tLC such that LC0
tLC

(1, n).

If n is odd, then according to the corollary 5.5 we have Mid0
tLC+n−1

2
(n+1

2).

If n is even, then according to the corollary 5.6 we have Mid0
tLC+n

2
(n
2) and Mid0

tLC+n
2

(n
2 +1).

Moreover, according to the lemma 5.8, the other cells cannot be middles.

In the first case and potentially in the second case, we have m1 = m2, which concludes the
proof.

In the second case, if m1 6= m2 then m2 = m1 + 1 or m1 = m2 + 1, so according to the
lemma 6.1 we have Mid0

t1(m2) and dst0t1(m1) = dst0t1(m2).

• We assume the induction hypothesis for ` and prove it for `+ 1.

Let d1 = dst`+1
t1 (m1). Because m1 is a true middle at the layer ` + 1, according to the

lemma 5.9, there exists t′1, b1, and b′1 such that LC`+1
t′1

(b1, b
′
1) and b′1− b1 = 2d1 or 2d1 + 1.

So, according to the lemma 5.12, at the layer `, among b1, and b′1 one is a border and the
other is a true middle with distance b′1 − b1. Let b`1 be the border and m`

1 be the middle.

15

Let d2 = dst`+1
t2 (m2). In the same way, we have LC`+1

t′2
(b2, b

′
2), and at the previous layer

the border b`2 and the middle m`
2 such that dst`t′2(m`

2) = b′2 − b2 = 2d2 or 2d2 + 1.

So, according to the induction hypothesis, we have Mid`
t′1

(m`
2) and dst`t′1(m`

1) = dst`t′1(m`
2).

Moreover, according to the lemma 6.2 we have dst`t′1(m`
2) = dst`t′2(m`

2).

So (2d1 or 2d1 + 1) = dst`t′1(m`
1) = dst`t′1(m`

2) = dst`t′2(m`
2) = (2d2 or 2d2 + 1).

Therefore, according to the lemma B.1, dst`+1
t1 (m1) = d1 = d2 = dst`+1

t2 (m2).

Moreover, Mid`
t′1

(m`
2) and Brd`

t′2
(b`2) so, according to the lemma 5.10, we have LC`+1

t′1
(b2, b

′
2).

Therefore, we prove Mid`+1
t1 (m2) by case on the parity of b′2 − b2, by using the lemma 5.5

or 5.6.

To alleviate the proof of the synchronization at the following section, we include here the last
lemmas about the middle field:

Lemma 6.4 (Three true middles cannot be adjacent).

∀`tc,¬Brd`
t(c) ∧Mid`

t(c− 1) ∧Mid`
t(c) ∧Mid`

t(c+ 1)⇒ False

Proof. The proof is made p.46 by using the proposition 6.3.

Lemma 6.5 (A true middle adjacent to a border has a distance = 1).

∀`tc,¬Brd`
t(c) ∧Mid`

t(c) ∧
(

Brd`
t(c− 1) ∨ Brd`

t(c+ 1)
)
⇒ dst`t(c) = 1

Proof. The proof is made p.47.

Unfortunately, the last three lemmas remain to be proved:

Lemma 6.6 (Middles have max distance).

∀`tm,¬Brd`
t(m) ∧Mid`

t(m)⇒
(
∀c,dst`t(c) ≤ dst`t(m)

)
Lemma 6.7 (Cells with the same distance than a Middle are Middles).

∀`tm,¬Brd`
t(m) ∧Mid`

t(m)⇒
(
∀c,dst`t(c) = dst`t(m)⇒ Mid`

t(c)
)

Lemma 6.8 (Middles appear when each cell is stable).

∀`tm,¬Brd`
t(m) ∧Mid`

t(m)⇒ ∀c,Sta`t(c)

7 Synchronization

For every layer, a region is split into two halves by the middle field, and they become two regions
at the next layer. Therefore, from a layer to the next layer, the size of the regions is divided by
2, until every cell becomes a border.

We define the output field Out`t+1(c) as true for a cell c at a layer ` if its neighbors and itself
are borders at the previous date t, and we say that a cell c fires at the date t if there exists one
layer ` such that Out`t(c):

16

Definition 7.1 (Output Field).

Out`0(c)
def
= False

Out`t+1(c)
def
= Brd`

t(c− 1) ∧ Brd`
t(c) ∧ Brd`

t(c+ 1) (8)

The aim of the paper is to prove the theorem 7.4, which states that the output field is
synchronized. In other words, that if a cell fires then every cell fires at the same time.

Lemma 7.2 (The Output Field fires for every layer).

∀`tc,Out`t+1(c)⇒ Out`+1
t+1(c)

Proof. Let `, t and c.
The hypothesis Out`t+1(c) implies (8) that Brd`

t(c− 1) and Brd`
t(c) and Brd`

t(c+ 1).

So (2), we have Brd`+1
t (c− 1) and Brd`+1

t (c) and Brd`+1
t (c+ 1).

Therefore (8) we proved Out`+1
t+1(c).

Proposition 7.3 (Every cell will fire).

∃`t,∀c,Out`t(c)

Proof. According to the lemma 5.2 p.11, there exists t such that LC0
t (1, n).

We remind that for a Light Cone LC`
t(b1, b2), b2 − b1 + 1 is the number of cells forming the

Light Cone, borders included.
According to the proposition 5.11 p.14, if b2− b1 + 1 ≥ 5, then the Light Cone is split in half

at the next layer:

LC`+1

t+
b2−b1+1

2

(
b1,

b1 + b2
2

)
∧ LC`+1

t+
b2−b1+1

2

(
b1 + b2 + 1

2
, b2

)
Both new Light Cones are smaller : they have b2−b1

2 + 1 cells, borders included.
According to the axiom 3.1 p.4, we have n ≥ 3, so 1 ≤ log2(n − 1), therefore there exists

` ∈ N such that log2(n− 1) < `+ 2. Let ` be the smallest, so we have :

log2(n− 1) < `+ 2 ⇒ n− 1 < 2` × 4
⇒ n−1

2`
+ 1 < 5

Therefore, we can repeat the process of splitting LC0
t (1, n) ` times1 until we obtain Light

Cones with a number of cells ≤ 4. Moreover, according to the definition (7) of a Light Cone, the
number of cells is ≥ 3. So, there is 3 or 4 cells in the last Light Cones.

According to the corollary 5.5 p.12 (for 3 cells) or the corolloray 5.6 p.13 (for 4 cells), in any
case at this layer ` every cell becomes a border or a middle.

Therefore, at the layer `+ 1, every cell becomes a border, then fires.

Theorem 7.4 (The fire is synchronized).

∀`tc,Out`t(c)⇒ ∀c′,Out`t(c
′)

Proof. We prove ∀t`c,Out`t(c)⇒ ∀c′,Out`t(c
′) by case on t:

1May be less, because b2−b1
2

is rounded down ?

17

• If t = 0, let ` and c. By (8), Out`0(c) is False, so the implication holds.

• Else, t = t′ + 1 and we prove ∀`c,Out`t′+1(c)⇒ ∀c′,Out`t′+1(c′) by induction on `:

– Out0t′+1(c) implies (8) Brd0
t′(c − 1) and Brd0

t′(c) and Brd0
t′(c + 1), so (2) we have

c − 1 = 1 ∨ c − 1 = n and c = 1 ∨ c = n and c + 1 = 1 ∨ c + 1 = n, which leads to a
contradiction (three variables with distinct values, but only two available values).

– We assume the induction hypothesis:

∀c,Out`t′+1(c)⇒ ∀c′,Out`t′+1(c′) (IH `)

Let c. The hypothesis Out`+1
t′+1(c) implies (8) that Brd`+1

t′ (c − 1) and Brd`+1
t′ (c) and

Brd`+1
t′ (c+ 1).

For each cell c′ ∈ {c−1, c, c+1}, by using the lemma B.2 we have Brd`
t′(c
′)∨¬Brd`

t′(c
′).

But because Brd`+1
t′ (c′) implies (2) that Brd`

t′(c
′) ∨ Mid`

t′(c
′), we have two cases:

Brd`
t′(c
′) or ¬Brd`

t′(c
′) ∧Mid`

t′(c
′).

We prove ∀c′,Out`+1
t′+1(c′) for the eight possible cases:

∗ If Brd`
t′(c− 1) and Brd`

t′(c) and Brd`
t′(c+ 1) then (8) Out`t′+1(c).

So, by using IH ` we have for every c′ that Out`t′+1(c′).

Therefore, by using the lemma 7.2, we have Out`+1
t′+1(c′).

∗ If Mid`
t′(c− 1) and Mid`

t′(c) and Mid`
t′(c+ 1), we obtain a contradiction by using

the lemma 6.4.

∗ The other cases are :

· Brd`
t′(c− 1) and Brd`

t′(c) and Mid`
t′(c+ 1)

· Brd`
t′(c− 1) and Mid`

t′(c) and Brd`
t′(c+ 1)

· Brd`
t′(c− 1) and Mid`

t′(c) and Mid`
t′(c+ 1)

· Mid`
t′(c− 1) and Brd`

t′(c) and Brd`
t′(c+ 1)

· Mid`
t′(c− 1) and Brd`

t′(c) and Mid`
t′(c+ 1)

· Mid`
t′(c− 1) and Mid`

t′(c) and Brd`
t′(c+ 1)

In every case, there exists a cell m ∈ {c−1, c, c+1} with is a middle, not a border,
and is adjacent to a border. So, by using the lemma 6.5 we have dst`t′(m) = 1.
Let c′ be a cell. By using the lemma 6.6 we have that:

dst`t′(c
′) ≤ dst`t′(m) = 1

We prove that Brd`+1
t′ (c′) by case on dst`t′(c

′):

· In the case dst`t′(c
′) = 0, by using the lemma 6.8 we have that Sta`t′(c

′), so by
using the lemma B.9 we have that Brd`

t′(c
′).

· If dst`t′(c
′) = 1, by using the lemma 6.7 we have that Mid`

t′(c
′).

Therefore, in every case Brd`+1
t′ (c′).

We proved it for every cell c′, so we have Brd`+1
t′ (c′ − 1) and Brd`+1

t′ (c′) and

Brd`+1
t′ (c′ + 1), therefore Out`+1

t′+1(c′).

18

8 Conclusion

Therefore, by using only the axioms and definitions of the fields at the section 3 p.4, we proved
the theorem 7.4 p.17 stating that as expected the fire is synchronized.

Unfortunaltely, the proof is not complete. It remains to prove the properties 6.6, 6.7 and 6.8
of the middles p.16. It also remains to implement most of the proofs in Coq, but some have
been at the section F p.48. At least, this technical report attests the faisability of the task.

Moreover, we used simplified definitions in this paper, which does not take into account the
cells outside the space. Indeed, in our framework, if c = 1 then the cell c− 1 is not in our space,
neither c+ 1 if c = n. We discuss this further in the appendix at the section A p.20.

Finally, this report proves the correctness of the high-level automaton by using a potentially
infinite number of states, due to the potentially infinite number of layers and values for the
distance field. Therefore, it remains also to formalize the construction of an explicit and finite
table of states, as in [?].

19

A Neighborhood

We remind the formal definition of the fields (see the section 3 p.4) at the table 10, and discuss
here what is required to be modified in order to solve the problem that if c = 1 then the cell
c− 1 is not in our space, neither c+ 1 for c = n.

The c− 1 and c+ 1 in Inpt+1(c) are a problem, so the field must be modified for the special

case c ∈ {1, n} with Inpt+1(0)
def
= Inpt(0) ∨ Inpt(1) and Inpt+1(n)

def
= Inpt(n− 1) ∨ Inpt(n).

The c− 1 and c+ 1 in Ins`+1
t+1(c) are not a problem, because the algorithm verifies if Ins`t+1(c)

first, which is false for c ∈ {1, n}.
The c− 1 and c+ 1 in dst`t+1(c) are not a problem, because a cell c ∈ {1, n} is not awaken or

is a border, so in any case we have ¬ Ins`t+1(c), so dst`t+1(c) = 0.

The c − 1 and c + 1 in Sta`t+1(c) are not really a problem, because the algorithm verifies if

Brd`
t+1(c) first, which is true for c ∈ {1, n} if the cell is awaken, and otherwise its distance is 0

so it cannot be 1 + . . . But rigorously, it may be necessary to specify in the implementation the
special case for c ∈ {1, n} that Sta`t+1(c) only if Brd`

t+1(c).

The c− 1 and c+ 1 in Mid`
t+1(c) are a problem, because borders become middles too in the

last layer. But the confusion between “true” middles and middles which are also borders is not

really intuitive and does not matter because Brd`+1
t (c)

def
= Brd`

t(c)∨Mid`
t(c) and the output field

is defined on the border field. So, instead of stating a special case, it may be less confusing to
define Mid`

t+1(c) as Ins`t+1(c)∧ . . . following by the rest of the definition, which solves in passing
the problem for c ∈ {1, n}.

B Technical Lemmas

The proof of the following lemmas are very detailed and written in a Coq style, in order to be
more easily implemented.

The following lemma is not really part of our framework, but has been written in order to be
used in other lemmas:

Lemma B.1 (Equality up to Parity).

∀nd1d2, (n = 2d1 ∨ n = 2d1 + 1) ∧ (n = 2d2 ∨ n = 2d2 + 1)⇒ d1 = d2

Proof. The proof is made by case on n:

• In this case, n is even.

Because n = 2d1 ∨ n = 2d1 + 1 and n is even, we have that n = 2d1.

Because n = 2d2 ∨ n = 2d2 + 1 and n is even, we have that n = 2d2.

So 2d1 = 2d2, therefore d1 = d2.

• In this case, n is odd.

Because n = 2d1 ∨ n = 2d1 + 1 and n is odd, we have that n = 2d1 + 1.

Because n = 2d2 ∨ n = 2d2 + 1 and n is odd, we have that n = 2d2 + 1.

So 2d1 + 1 = 2d2 + 1, therefore d1 = d2.

The other lemmas are technical lemmas stating basic properties about the fields:

20

Inp0(c)
def
= gen(c) = true

Inpt+1(c)
def
= Inpt(c− 1) ∨ Inpt(c) ∨ Inpt(c+ 1)

Brd0
t (c)

def
= Inpt(c) ∧ (1 = c ∨ c = n)

Brd`+1
t (c)

def
= Brd`

t(c) ∨Mid`
t(c)

Ins0t (c)
def
= Inpt(c) ∧ 1 < c ∧ c < n

Ins`+1
0 (c)

def
= False

Ins`+1
t+1(c)

def
= Ins`t+1(c) ∧ Sta`t+1(c)

∧
(

dst`t+1(c) < dst`t(c− 1) ∨ dst`t+1(c) < dst`t(c+ 1)
)

dst`0(c)
def
= 0

dst`t+1(c)
def
=

{
1 + min

(
dst`t(c− 1),dst`t(c+ 1)

)
if Ins`t+1(c)

0 otherwise

Sta`0(c)
def
= Brd`

0(c)

Sta`t+1(c)
def
= Brd`

t+1(c)

∨
(

dst`t+1(c) = 1 + dst`t(c− 1) ∧ Sta`t(c− 1)
)

∨
(

dst`t+1(c) = 1 + dst`t(c+ 1) ∧ Sta`t(c+ 1)
)

Mid`
0(c)

def
= False

Mid`
t+1(c)

def
=

(
dst`t+1(c) > max

(
dst`t(c− 1),dst`t(c+ 1)

)
∧ Sta`t(c− 1) ∧ Sta`t(c+ 1)

)
∨
(

dst`t+1(c) = max
(

dst`t(c− 1),dst`t(c+ 1)
)

∧ Sta`t(c− 1) ∧ Sta`t(c) ∧ Sta`t(c+ 1)

)

Table 10: Formal Definition of the Fields

Lemma B.2 (The Border Field is True or False).

∀`tc,Brd`
t(c) ∨ ¬Brd`

t(c)

21

Proof. By using the border field equations (2), or the characterization of bool/Prop fields (see
the Coq file p.48).

Lemma B.3 (Local Distance).

∀`tc,dst`t+1(c) ≤ 1 + min
(

dst`t(c− 1),dst`t(c+ 1)
)

Proof. Let `, t and c. By case :

• If Ins`t+1(c) then (6) the equality holds, so does the inequality.

• If ¬ Ins`t+1(c) then (6) dst`t+1(c) = 0, so the inequality holds.

Lemma B.4 (Middle Distance).

∀`tc,Mid`
t+1(c)⇒ dst`t+1(c) ≥ max

(
dst`t(c− 1),dst`t(c+ 1)

)
Proof. Let `, t and c. By using (5), Mid`

t+1(c) implies two cases:

dst`t+1(c) > max
(

dst`t(c− 1),dst`t(c+ 1)
)

dst`t+1(c) = max
(

dst`t(c− 1),dst`t(c+ 1)
)

and the result holds in every cases.

Remark. We could use the previous lemma to simplify the proof of the following.

Lemma B.5 (Brd and Ins are exclusive).

∀`tc,Brd`
t(c)⇒ Ins`t(c)⇒ False

Proof. The proof is made by induction on `:

• If ` = 0 then Brd`
t(c) implies (2) that 1 = c or c = n, and Ins`t(c) implies (3) that 1 < c < n,

hence the contradiction.

• We assume that:
∀tc,Brd`

t(c)⇒ Ins`t(c)⇒ False (IH `)

Let t and c, and we assume that:
Brd`+1

t (c) (HBrd)

Ins`+1
t (c) (HIns)

The proof of False is made by case on t :

– If t = 0 then (3) Ins`+1
t (c) is False, and is assumed.

– If t = t′ + 1, HIns implies (3) that:

Ins`t′+1(c) (HIns2)

dst`t′+1(c) < dst`t′(c− 1) ∨ dst`t′+1(c) < dst`t′(c− 1) (Hdst)

HBrd implies (2) that Brd`
t′+1(c) ∨Mid`

t′+1(c), so the proof is made by case:

22

∗ If Brd`
t′+1(c), because HIns2, we have False by using IH `.

∗ If Mid`
t′+1(c), then by lemma B.4:

dst`t′+1(c) ≥ max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

therefore dst`t′+1(c) ≥ dst`t′(c− 1) and dst`t′+1(c) ≥ dst`t′(c+ 1), which contradicts
Hdst.

Lemma B.6 (Distance of a Border).

∀`tc,Brd`
t(c)⇒ dst`t(c) = 0

Proof. Assuming that Brd`
t(c), by using the lemma B.5, we have that ¬ Ins`t(c). Therefore (6)

dst`t(c) = 0.

Lemma B.7 (Middles have stable neighbours).

∀`tc,Mid`
t+1(c)⇒ Sta`t(c− 1) ∧ Sta`t(c+ 1)

Proof. The result is obtained by hypothesis on the two cases (5) of Mid`
t+1(c).

Remark. We could use the previous lemma (introduced lately during the redaction) to simplify
some proofs.

Lemma B.8 (A middle is stable).

∀`tc,Mid`
t(c)⇒ Sta`t(c)

Proof. Let `. The proof is made by case on t:

• If t = 0, let c. By (5), Mid`
0(c) is False, so the implication holds.

• Else, we prove Sta`t(c) by case (5) on the hypothesis Mid`
t(c):

– In the first case we assume:

dst`t+1(c) > max
(

dst`t(c− 1),dst`t(c+ 1)
)

(Hd)

Sta`t(c− 1) (HSL)

Sta`t(c+ 1) (HSR)

Hd implies that:

dst`t+1(c) ≥ 1 + max
(

dst`t(c− 1),dst`t(c+ 1)
)

≥ 1 + dst`t(c− 1)

And the lemma B.3 implies that:

dst`t+1(c) ≤ 1 + min
(

dst`t(c− 1),dst`t(c+ 1)
)

≤ 1 + dst`t(c− 1)

So dst`t+1(c) = 1 + dst`t(c− 1). But HSL, therefore (4) Sta`t(c).

23

– In the second case, Sta`t(c) is obtained by hypothesis.

Lemma B.9 (A stable cell with dst = 0 is a border).

∀`tc,Sta`t(c) ∧ dst`t(c) = 0⇒ Brd`
t(c)

Proof. Let `. The proof is made by case on t:

• If t = 0, let c. We assume that Sta`0(c) and dst`0(c) = 0. Brd`
0(c) is obtained (4) with the

hypothesis Sta`0(c).

• Else, let c. We assume that Sta`t+1(c) and dst`t+1(c) = 0. The proof is made by case (4) on

the hypothesis Sta`t+1(c):

– In the first case Brd`
t+1(c) is obtained by hypothesis.

– In the second case we have dst`t+1(c) = 1+dst`t(c−1), which contradicts dst`t+1(c) = 0.

– In the second case we have dst`t+1(c) = 1+dst`t(c+1), which contradicts dst`t+1(c) = 0.

Corollary B.10 (A non-border Middle has a distance > 0).

∀`tc,¬Brd`
t(c) ∧Mid`

t(c)⇒ dst`t(c) > 0

Proof. By using the contraposition of the lemma B.9 on the hypothesis ¬Brd`
t(c) we have

¬Sta`t(c) or dst`t(c) 6= 0.
But by using the lemma B.8 on the hypothesis Mid`

t(c) we have Sta`t(c).
So dst`t(c) > 0.

Lemma B.11 (At layer 0, the cells end up being awaken).

∃t,∀c, Inpt(c)

Proof. By axiom 3.2, there exists at least one general, so by (1) there exists some cells awaken
at t = 0. Then, the input field propagates from cell to cell, so the last cells are the most distant
from the generals.

If a cell is between two generals g1 and g2, then it requires
⌈
|g1−g2|

2

⌉
steps to be awakened.

If a cell is between a general g and a border (included), then it requires g − 1 steps on the left,
and n− g steps on the right.

Let {g1, . . . , gk} = {1 ≤ c ≤ n | gen(c) = true}, with g1 ≤ · · · ≤ gk. Therefore, we should
prove in the Coq code that:

t = max
1≤i<k

{
g1 − 1,

⌈
gi+1 − gi

2

⌉
, n− gk

}

24

C Monotonicity

In this section we prove monotonicity properties for the fields, which means that if the property
holds for a given t, then it holds for every t′ ≥ t.

Lemma C.1 (Inp is monotone).

∀tc, Inpt(c)⇒ (∀t′, t′ ≥ t⇒ Inpt′(c))

Proof. Let t and c. We assume the hypothesis Inpt(c).
Let t′. We prove Inpt′(c) by case on the hypothesis t′ ≥ t:

• If t′ = t then Inpt′(c) by hypothesis.

• If t′ = t′′ + 1 with t′′ ≥ t such that Inpt′′(c), then by using the equation (1) we have
Inpt′′+1(c).

Therefore Inpt′(c).

Lemma C.2 (Ins monotone implies dst is increasing).

∀`,
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,dst`t(c) ≤ dst`t+1(c)

)
Proof. Let `, and we assume:

∀tc, Ins`t(c)⇒ Ins`t+1(c) (Hins)

The proof is made by induction on t:

• If t = 0, then (6) dst`t(c) = 0, therefore dst`t(c) ≤ dst`t+1(c).

• We assume that:
∀c,dst`t(c) ≤ dst`t+1(c) (IH t)

Let c. We proove by case that dst`t+1(c) ≤ dst`t+2(c):

– If Ins`t+2(c) then (6) dst`t+2(c) = 1 + min
(

dst`t+1(c− 1),dst`t+1(c+ 1)
)

.

But by using IH t we have that dst`t(c−1) ≤ dst`t+1(c−1) and dst`t(c+1) ≤ dst`t+1(c+1),
so:

1 + min
(

dst`t(c− 1),dst`t(c+ 1)
)
≤ dst`t+2(c)

Therefore, by using the lemma B.3, we have dst`t+1(c) ≤ dst`t+2(c).

– If ¬ Ins`t+2(c) then (6) dst`t+2(c) = 0. Moreover, by using the contraposition of Hins we

have ¬ Ins`t+1(c), so dst`t+1(c) = 0 too. Therefore, in any cases, dst`t+1(c) ≤ dst`t+2(c).

Lemma C.3 (Brd and Ins monotone implies a stable dst is constant).

∀`,
(
∀tc,Brd`

t(c)⇒ Brd`
t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,Sta`t(c)⇒ dst`t(c) = dst`t+1(c)

)

25

Proof. Let `. We assume that:
∀tc,Brd`

t(c)⇒ Brd`
t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

We prove ∀tc,Sta`t(c)⇒ dst`t(c) = dst`t+1(c) by induction on t:

• If t = 0 then (4) the hypothesis Sta`0(c) implies Brd`
0(c), so according to HBrd we have

Brd`
1(c) too. Therefore, according to the lemma B.6, we have dst`0(c) = 0 = dst`1(c).

• We assume the induction hypothesis:

∀c,Sta`t(c)⇒ dst`t(c) = dst`t+1(c) (IH t)

Let c. We assume the hypothesis:
Sta`t+1(c) (HSta)

We prove dst`t+1(c) = dst`t+2(c) by case (4) on HSta:

– If Brd`
t+1(c) then according to HBrd we have Brd`

t+2(c) too. Therefore, according to

the lemma B.6, we have dst`t+1(c) = 0 = dst`t+2(c).

– In that case, we have:
dst`t+1(c) = 1 + dst`t(c− 1) (Hdst)

Sta`t(c− 1) (HSta2)

Firstly, by using HSta2 and the induction hypothesis IH t we have dst`t(c − 1) =
dst`t+1(c− 1), so by using Hdst, we have :

dst`t+1(c) = 1 + dst`t(c− 1) = 1 + dst`t+1(c− 1)

Moreover, by using the lemma B.3, we have:

dst`t+2(c) ≤ 1 + min
(

dst`t+1(c− 1),dst`t+1(c+ 1)
)

≤ 1 + dst`t+1(c− 1)

≤ dst`t+1(c)

Secondly, by using HIns and the lemma C.2:

dst`t+1(c) ≤ dst`t+2(c)

Therefore, we proved the equality.

– If dst`t+1(c) = 1 + dst`t(c+ 1) and Sta`t(c+ 1), the proof is similar to the previous case.

Lemma C.4 (Brd and Ins monotone implies Sta monotone).

∀`,
(
∀tc,Brd`

t(c)⇒ Brd`
t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,Sta`t(c)⇒ Sta`t+1(c)

)

26

Proof. Let `. We assume that:
∀tc,Brd`

t(c)⇒ Brd`
t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

We prove ∀tc,Sta`t(c)⇒ Sta`t+1(c) by induction on t:

• If t = 0 then (4) the hypothesis Sta`0(c) implies Brd`
0(c), so according to HBrd we have

Brd`
1(c) too. Therefore, we have (4) the first case of Sta`1(c).

• We assume the induction hypothesis:

∀c,Sta`t(c)⇒ Sta`t+1(c) (IH t)

Let c. We assume the hypothesis:
Sta`t+1(c) (HSta)

We prove Sta`t+2(c) by case (4) on HSta:

– If Brd`
t+1(c) then according to HBrd we have Brd`

t+2(c) too. Therefore, we have (4)

the first case of Sta`t+2(c).

– In that case, we have:
dst`t+1(c) = 1 + dst`t(c− 1) (Hdst)

Sta`t(c− 1) (HSta2)

By using HBrd, HIns and the lemma C.3, HSta2 implies that:

dst`t(c− 1) = dst`t+1(c− 1) (H)

Firstly, by using the lemma B.3 then H then Hdst, we have:

dst`t+2(c) ≤ 1 + min
(

dst`t+1(c− 1),dst`t+1(c+ 1)
)

≤ 1 + dst`t+1(c− 1)

= 1 + dst`t(c− 1)

= dst`t+1(c)

Secondly, by using HIns and the lemma C.2, we have:

dst`t+1(c) ≤ dst`t+2(c)

Therefore dst`t+1(c) = dst`t+2(c). So, by using Hdst then H:

dst`t+2(c) = dst`t+1(c)

= 1 + dst`t(c− 1)

= 1 + dst`t+1(c− 1)

Moreover, by using HSta2 and the induction hypothesis IH t we have Sta`t+1(c − 1).

Therefore (4) we proved Sta`t+2(c).

– If dst`t+1(c) = 1 + dst`t(c+ 1) and Sta`t(c+ 1), the proof is similar to the previous case.

27

Lemma C.5 (Brd and Ins monotone implies Mid monotone).

∀`,
(
∀tc,Brd`

t(c)⇒ Brd`
t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,Mid`

t(c)⇒ Mid`
t+1(c)

)
Proof. Let `. We assume that:

∀tc,Brd`
t(c)⇒ Brd`

t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

We prove ∀tc,Mid`
t(c)⇒ Mid`

t+1(c) by case on t:

• If t = 0 then (5) Mid`
t(c) is False, so the implication holds.

• If t = t′ + 1, let c, and we assume the hypothesis:

Mid`
t′+1(c) (HMid)

We prove Mid`
t′+2(c) by case (5) on HMid:

– In the first case, we have:

dst`t′+1(c) > max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

(Hdst)

Sta`t′(c− 1) (HStaL)

Sta`t′(c+ 1) (HStaR)

By using HBrd, HIns and the lemma C.3:

∗ HStaL implies that dst`t′(c− 1) = dst`t′+1(c− 1)

∗ HStaR implies that dst`t′(c+ 1) = dst`t′+1(c+ 1)

Therefore, we have:

max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

= max
(

dst`t′+1(c− 1),dst`t′+1(c+ 1)
)

(Hmax)

So, by using HIns and the lemma C.2, then Hdst, then Hmax, we have:

dst`t′+2(c) ≥ dst`t′+1(c)

> max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

= max
(

dst`t′+1(c− 1),dst`t′+1(c+ 1)
)

Moreover, by using HBrd, HIns and the lemma C.4:

∗ HStaL implies that Sta`t′+1(c− 1)

∗ HStaR implies that Sta`t′+1(c+ 1)

Therefore, we have the left part of Mid`
t′+2(c).

28

– In the second case, we have:

dst`t′+1(c) = max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

(Hdst)

Sta`t′(c− 1) (HStaL)

Sta`t′(c) (HStaC)

Sta`t′(c+ 1) (HStaR)

By using HBrd, HIns and the lemma C.4:

∗ HStaL implies that Sta`t′+1(c− 1)

∗ HStaC implies that Sta`t′+1(c)

∗ HStaR implies that Sta`t′+1(c+ 1)

Therefore, to obtain the right part of Mid`
t′+2(c), it remains only to prove that

dst`t′+2(c) = max
(

dst`t′+1(c− 1),dst`t′+1(c+ 1)
)

.

By using HBrd, HIns and the lemma C.3, Sta`t′+1(c) implies that:

dst`t′+1(c) = dst`t′+2(c) (Hdst2)

By using HBrd, HIns and the lemma C.3:

∗ HStaL implies that dst`t′(c− 1) = dst`t′+1(c− 1)

∗ HStaR implies that dst`t′(c+ 1) = dst`t′+1(c+ 1)

Therefore, we have:

max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

= max
(

dst`t′+1(c− 1),dst`t′+1(c+ 1)
)

(Hmax)

So, by using Hdst2, then Hdst, then Hmax, we have:

dst`t′+2(c) = dst`t′+1(c)

= max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

= max
(

dst`t′+1(c− 1),dst`t′+1(c+ 1)
)

Therefore, we have the right part of Mid`
t′+2(c).

Lemma C.6 (Brd` and Ins` monotone implies Brd`+1 monotone).

∀`,
(
∀tc,Brd`

t(c)⇒ Brd`
t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc,Brd`+1

t (c)⇒ Brd`+1
t+1(c)

)
Proof. Let `. We assume that:

∀tc,Brd`
t(c)⇒ Brd`

t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

Let t and c. We prove Brd`+1
t+1(c) by case (2) on the hypothesis Brd`+1

t (c):

29

• In the first case, we have Brd`
t(c), so by using HBrd we have Brd`

t+1(c).

Therefore (2), we proved the left part of Brd`+1
t+1(c).

• In the second case, we have Mid`
t(c).

So, by using HBrd, HIns and the lemma C.5 we have Mid`
t+1(c).

Therefore (2), we proved the right part of Brd`+1
t+1(c).

Lemma C.7 (Brd` and Ins` monotone implies Ins`+1 monotone).

∀`,
(
∀tc,Brd`

t(c)⇒ Brd`
t+1(c)

)
⇒
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
⇒
(
∀tc, Ins`+1

t (c)⇒ Ins`+1
t+1(c)

)
Proof. Let `. We assume that:

∀tc,Brd`
t(c)⇒ Brd`

t+1(c) (HBrd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (HIns)

We prove Ins`+1
t (c)⇒ Ins`+1

t+1(c) by case on t:

• If t = 0 then (3) Ins`+1
t (c) is False, so the implication holds.

• If t = t′ + 1, let c. The hypothesis Ins`+1
t′+1(c) implies (3):

Ins`t′+1(c) (HIns2)

Sta`t′+1(c) (HSta)

dst`t′+1(c) < dst`t′(c− 1) ∨ dst`t′+1(c) < dst`t′(c− 1) (Hdst)

By using HIns, HIns2 implies that Ins`t′+2(c).

Moreover, by using HBrd, HIns and the lemma C.4, HSta implies that Sta`t′+2(c).

Therefore, to obtain Ins`+1
t′+2(c) , it remains only to prove that dst`t′+2(c) < dst`t′+1(c− 1)∨

dst`t′+2(c) < dst`t′+1(c− 1).

Notice that by using HBrd, HIns and the lemma C.3, HSta implies that:

dst`t′+1(c) = dst`t′+2(c) (H)

We prove dst`t′+2(c) < dst`t′+1(c− 1) ∨ dst`t′+2(c) < dst`t′+1(c− 1) by case on Hdst:

– In the first case, we have dst`t′+1(c) < dst`t′(c− 1).

So, by using H, then the case hypothesis, then HIns and the lemma C.2, we have:

dst`t′+2(c) = dst`t′+1(c)

< dst`t′(c− 1)

≤ dst`t′+1(c− 1)

Therefore, we proved the left part of dst`t′+2(c) < dst`t′+1(c − 1) ∨ dst`t′+2(c) <

dst`t′+1(c− 1).

30

– The case dst`t′+1(c) < dst`t′(c+ 1) is similar, and proves the right part of dst`t′+2(c) <

dst`t′+1(c− 1) ∨ dst`t′+2(c) < dst`t′+1(c− 1).

Proposition C.8 (Brd and Ins are monotone).

∀`,
(
∀tc,Brd`

t(c)⇒ Brd`
t+1(c)

)
∧
(
∀tc, Ins`t(c)⇒ Ins`t+1(c)

)
Proof. The proof is made by induction on `:

• If ` = 0, we prove the two parts separately:

– Let t and c. The hypothesis Brd0
t (c) implies (2) that Inpt(c) and 1 = c ∨ c = n.

So, by using the lemma C.1, we have Inpt+1(c) and 1 = c ∨ c = n.

Therefore (2) we proved that Brd0
t+1(c).

– Let t and c. The hypothesis Ins0t (c) implies (3) that Inpt(c) and 1 < c < n.

So, by using the lemma C.1, we have Inpt+1(c) and 1 < c < n.

Therefore (3) we proved that Ins0t+1(c).

• We assume the induction hypothesis:

∀tc,Brd`
t(c)⇒ Brd`

t+1(c) (IH `
Brd)

∀tc, Ins`t(c)⇒ Ins`t+1(c) (IH `
Ins)

By using IH `
Brd, IH `

Ins and the lemma C.6, we have:

∀tc,Brd`+1
t (c)⇒ Brd`+1

t+1(c)

By using IH `
Brd, IH `

Ins and the lemma C.7, we have:

∀tc, Ins`+1
t (c)⇒ Ins`+1

t+1(c)

Therefore, we proved the induction step.

Corollary C.9 (Brd is monotone).

∀`tc,Brd`
t(c)⇒

(
∀t′, t′ ≥ t⇒ Brd`

t′(c)
)

Proof. Let `, t and c. We assume the hypothesis Brd`
t(c).

Let t′. We prove Brd`
t′(c) by case on the hypothesis t′ ≥ t:

• If t′ = t then Brd`
t′(c) by hypothesis.

• If t′ = t′′ + 1 with t′′ ≥ t such that Brd`
t′′(c), then by using the left part of the proposition

C.8 we have Brd`
t′′+1(c). Therefore Brd`

t′(c).

31

Corollary C.10 (Ins is monotone).

∀`tc, Ins`t(c)⇒
(
∀t′, t′ ≥ t⇒ Ins`t′(c)

)
Proof. The proof is similar to the previous one, and uses the right part of the proposition C.8.

Corollary C.11 (Sta is monotone).

∀`tc,Sta`t(c)⇒
(
∀t′, t′ ≥ t⇒ Sta`t′(c)

)
Proof. Let `, t and c. We assume the hypothesis Sta`t(c).

Let t′. We prove Sta`t′(c) by case on the hypothesis t′ ≥ t:

• If t′ = t then Sta`t′(c) by hypothesis.

• If t′ = t′′ + 1 with t′′ ≥ t such that Sta`t′′(c), then by using both parts of the proposition
C.8 and the lemma C.4 we have Sta`t′′+1(c).

Therefore Sta`t′(c).

Corollary C.12 (Mid is monotone).

∀`tc,Mid`
t(c)⇒

(
∀t′, t′ ≥ t⇒ Mid`

t′(c)
)

Proof. The proof is similar to the previous one, and uses both parts of the proposition C.8 and
the lemma C.5.

Corollary C.13 (dst is increasing).

∀`tct′, t′ ≥ t⇒ dst`t′(c) ≥ dst`t(c)

Proof. Let `, t, c and t′.
We prove dst`t′(c) ≥ dst`t(c) by case on the hypothesis t′ ≥ t:

• If t′ = t then dst`t′(c) = dst`t(c), therefore dst`t′(c) ≥ dst`t(c).

• In that case t′ = t′′ + 1 with t′′ ≥ t such that dst`t′′(c) ≥ dst`t(c).

Therefore, by using the right part of the proposition C.8 and the lemma C.2, then the
hypothesis, we have:

dst`t′(c) = dst`t′′+1(c)

≥ dst`t′′(c)

≥ dst`t(c)

Corollary C.14 (A stable dst is constant).

∀`tc,Sta`t(c)⇒
(
∀t′, t′ ≥ t⇒ dst`t′(c) = dst`t(c)

)
Proof. Let `, t and c. We assume the hypothesis Sta`t(c).

Let t′. We prove Brd`
t(c) by case on the hypothesis t′ ≥ t:

32

• If t′ = t then dst`t′(c) = dst`t(c).

• In that case t′ = t′′ + 1 with t′′ ≥ t such that dst`t′′(c) = dst`t(c).

By using the hypotheses Sta`t(c) and t′′ ≥ t, and the lemma C.11, we have Sta`t′′(c).

So, by using both parts of the proposition C.8 and the lemma C.3 we have dst`t′′(c) =
dst`t′′+1(c). Therefore:

dst`t′(c) = dst`t′′+1(c)

= dst`t′′(c)

= dst`t(c)

D Proofs for the Light Cones

The proofs of the following results are very detailed and written in a Coq style, in order to be
implemented. Therefore, for sake of clarity, we will only write and comment the results in the
section 5 p.11, and detail the proofs in this section.

Proposition (5.3 p.12: Running of a Light Cone).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀ 0 ≤ d ≤ b2 − b1

2
,

dst`t+d(b1 + d) = d ∧ Sta`t+d(b1 + d)

∧dst`t+d(b2 − d) = d ∧ Sta`t+d(b2 − d)

∧
(
∀ b1 + d ≤ c ≤ b2 − d,dst`t+d(c) ≥ d

)
Proof. Let `, b1, b2 and t. We assume that LC`

t(b1, b2).
The proof is made by induction on d :

• In this case, d = 0.

Because LC`
t(b1, b2), we have that Brd`

t(b1) and Brd`
t(b2). So, by using the lemma B.6 we

have that dst`t(b1) = 0 and dst`t(b2) = 0, and by definition (4) we have that Sta`t(b1) and
Sta`t(b2).

Moreover, for every b1 ≤ c ≤ b2 we have dst`t(c) ≥ 0 because dst is an integer field.

• We assume that d+ 1 ≤ b2−b1
2 . So d ≤ b2−b1

2 too, and we have the induction hypothesis:

dst`t+d(b1 + d) = d ∧ Sta`t+d(b1 + d)

∧ dst`t+d(b2 − d) = d ∧ Sta`t+d(b2 − d)

∧
(
∀ b1 + d ≤ c ≤ b2 − d,dst`t+d(c) ≥ d

)
Firstly, we prove that for every b1 + (d+ 1) ≤ c ≤ b2 − (d+ 1), we have :

dst`t+(d+1)(c) = 1 + min
(

dst`t+d(c− 1),dst`t+d(c+ 1)
)

(Hc)

Indeed, if b1 +(d+1) ≤ c ≤ b2− (d+1) then by transitivity we have b1 < c < b2. So, because
LC`

t(b1, b2) we have Ins`t+1(c). So, by monotonicity (lemma C.10) we have Ins`t+(d+1)(c).
Therefore, by using the equation (6), we have Hc.
The proof is made by case on c :

33

• In that case, c = b1 + (d+ 1).

Because d + 1 ≤ b2−b1
2 , we have 2d + 2 ≤ b2 − b1, so b1 + d + 2 ≤ b2 − d. So b1 + d ≤

b1 + d+ 2 ≤ b2 − d, and by using the induction hypothesis we have dst`t+d(b1 + d+ 2) ≥ d.

Moreover, by using the induction hypothesis, we have dst`t+d(b1 + d) = d, so dst`t+d(b1 +

d+ 2) ≥ dst`t+d(b1 + d).

By using Hc with c = b1 + d+ 1, we have :

dst`t+(d+1)(b1 + d+ 1) = 1 + min
(

dst`t+d(b1 + d),dst`t+d(b1 + d+ 2)
)

= 1 + dst`t+d(b1 + d)
= 1 + d

Moreover, because dst`t+(d+1)(b1 + d+ 1) = 1 + dst`t+d(b1 + d) and by induction hypothesis

Sta`t+d(b1 + d), we have by definition (4) that Sta`t+(d+1)(b1 + d+ 1).

• The case c = b2 − (d+ 1) is similar, by using the induction hypothesis dst`t+d(b2 − d) = d

and Sta`t+d(b2 − d).

• If b1 + (d+ 1) < c < b2 − (d+ 1), then we have :

b1 + d < c− 1 < b2 − d− 2 < b2 − d

b1 + d < b1 + d+ 2 < c+ 1 < b2 − d

So, by using the induction hypothesis we have dst`t+d(c− 1) ≥ d and dst`t+d(c+ 1) ≥ d.

Therefore, by using Hc we have :

dst`t+(d+1)(c) = 1 + min
(

dst`t+d(c− 1),dst`t+d(c+ 1)
)

≥ 1 + min (d, d)
= 1 + d

Corollary (5.5 p.12: Middle of an odd Light Cone).

∀`tb1b2,LC`
t(b1, b2) ∧ b2 − b1 + 1 odd

⇒ Mid`

t+
b2−b1

2

(
b1 + b2

2

)
Proof. Because LC`

t(b1, b2) we have b1 + 2 ≤ b2, so b2−b1
2 ≥ 1.

Because b2 − b1 + 1 is odd, we have :

b1 + b2 + 1

2
=
b1 + b2

2

b1 +

(
b2 − b1

2
− 1

)
=
b1 + b2

2
− 1

b1 −
(
b2 − b1

2
− 1

)
=
b1 + b2

2
+ 1

34

Because LC`
t(b1, b2), by using the proposition 5.3 for d = b2−b1

2 − 1 we have:

dst`
t+

b2−b1
2 −1(

b1 + b2
2

− 1) =
b2 − b1

2
− 1 ∧ Sta`

t+
b2−b1

2 −1(
b1 + b2

2
− 1)

dst`
t+

b2−b1
2 −1(

b1 + b2
2

+ 1) =
b2 − b1

2
− 1 ∧ Sta`

t+
b2−b1

2 −1(
b1 + b2

2
+ 1)

Because LC`
t(b1, b2), by using the proposition 5.3 for d = b2−b1

2 we have:

dst`
t+

b2−b1
2

(
b1 + b2

2
) =

b2 − b1
2

So, by denoting m = b1+b2
2 we have :

dst`
t+

b2−b1
2

(m) > max
(

dst`
t+

b2−b1
2 −1(m− 1),dst`

t+
b2−b1

2 −1(m+ 1)
)

with Sta`
t+

b2−b1
2 −1(m− 1) and Sta`

t+
b2−b1

2 −1(m+ 1).

Therefore by definition (5) Mid`

t+
b2−b1

2

(m).

Corollary (5.6 p.13: Middles of an even Light Cone).

∀`tb1b2,LC`
t(b1, b2) ∧ b2 − b1 + 1 even

⇒ Mid`

t+
b2−b1+1

2

(
b1 + b2 − 1

2

)
∧Mid`

t+
b2−b1+1

2

(
b1 + b2 + 1

2

)
Proof. Because LC`

t(b1, b2) we have b1 + 2 ≤ b2, so because b2 − b1 is odd we have b2−b1−1
2 ≥ 1.

Because b2 − b1 + 1 is even, we have :

b1 + b2 + 1

2
=
b1 + b2 − 1

2
+ 1

b1 +

(
b2 − b1 − 1

2
− 1

)
=
b1 + b2 − 1

2
− 1

b1 −
(
b2 − b1 − 1

2
− 1

)
=
b1 + b2 + 1

2
+ 1

Because LC`
t(b1, b2), by using the proposition 5.3 for d = b2−b1−1

2 − 1 we have:

dst`
t+

b2−b1−1
2 −1(

b1 + b2 − 1

2
− 1) =

b2 − b1 − 1

2
− 1

with Sta`
t+

b2−b1−1
2 −1(

b1 + b2 − 1

2
− 1)

dst`
t+

b2−b1−1
2 −1(

b1 + b2 + 1

2
+ 1) =

b2 − b1 − 1

2
− 1

with Sta`
t+

b2−b1−1
2 −1(

b1 + b2 + 1

2
+ 1)

So, by monotonicity (lemmas C.11 and C.14), we have :

dst`
t+

b2−b1−1
2

(
b1 + b2 − 1

2
− 1) =

b2 − b1 − 1

2
− 1

35

with Sta`
t+

b2−b1−1
2

(
b1 + b2 − 1

2
− 1)

dst`
t+

b2−b1−1
2

(
b1 + b2 + 1

2
+ 1) =

b2 − b1 − 1

2
− 1

with Sta`
t+

b2−b1−1
2

(
b1 + b2 + 1

2
+ 1)

Because LC`
t(b1, b2), by using the proposition 5.3 for d = b2−b1−1

2 we have:

dst`
t+

b2−b1−1
2

(
b1 + b2 − 1

2
) =

b2 − b1 − 1

2

with Sta`
t+

b2−b1−1
2

(
b1 + b2 − 1

2
)

dst`
t+

b2−b1−1
2

(
b1 + b2 + 1

2
) =

b2 − b1 − 1

2

with Sta`
t+

b2−b1−1
2

(
b1 + b2 + 1

2
)

Notice that b2−b1−1
2 + 1 = b2−b1+1

2 . So, by monotonicity (lemma C.14), we have :

dst`
t+

b2−b1+1
2

(
b1 + b2 − 1

2
) =

b2 − b1 − 1

2

dst`
t+

b2−b1+1
2

(
b1 + b2 + 1

2
) =

b2 − b1 − 1

2

So, by denoting m1 = b1+b2−1
2 and m2 = b1+b2+1

2 we have :

dst`
t+

b2−b1+1
2

(m1) = max
(

dst`
t+

b2−b1−1
2

(m1 − 1),dst`
t+

b2−b1−1
2

(m1 + 1)
)

with Sta`
t+

b2−b1−1
2

(m1 − 1), Sta`
t+

b2−b1−1
2

(m1) and Sta`
t+

b2−b1−1
2

(m1 + 1).

Therefore by definition (5) Mid`

t+
b2−b1+1

2

(m1).

dst`
t+

b2−b1+1
2

(m2) = max
(

dst`
t+

b2−b1−1
2

(m2 − 1),dst`
t+

b2−b1−1
2

(m2 + 1)
)

with Sta`
t+

b2−b1−1
2

(m2 − 1), Sta`
t+

b2−b1−1
2

(m2) and Sta`
t+

b2−b1−1
2

(m2 + 1).

Therefore by definition (5) Mid`

t+
b2−b1+1

2

(m2).

Lemma (5.7 p.13: The other cells of a Light Cone are not Middles).

∀`tb1b2,LC`
t(b1, b2)⇒ ∀t′ ≥ t+

b2 − b1
2

,∀c,(
b1 ≤ c <

b1 + b2
2

∨ b1 + b2 + 1

2
< c ≤ b2

)
⇒ ¬Mid`

t′+1(c)

Proof. Let `, t, b1 and b2. We assume the hypothesis LC`
t(b1, b2).

Let t′ ≥ t+ b2−b1
2 and let c be a cell.

Firstly, we prove that c = b1 + d or c = b2− d with 0 ≤ d < b2−b1
2 . The proof is made by case

on c:

36

• If b1 ≤ c < b1+b2
2 , b1 ≤ c implies that c = b1 + d. Moreover:

We have b1 + d = c <
b1 + b2

2

Therefore d <
b1 + b2

2
− b1 =

b1 + b2
2

− 2b1
2

Therefore (see the following remark) d <
b1 + b2 − 2b1

2
=
b2 − b1

2

• If b1+b2+1
2 < c ≤ b2, c ≤ b2 implies that c = b2 − d. Moreover:

We have b2 − d = c <
b1 + b2 + 1

2

Therefore d < b2 −
b1 + b2 + 1

2
=

2b2
2
− b1 + b2 + 1

2

Therefore (see the following remark) d <
2b2 − b1 − b2

2
=
b2 − b1

2

By using the hypothesis LC`
t(b1, b2) and the corollary 5.4 on c = b1 + d or c = b2 − d, we have

that:
dst`

t+
b2−b1

2

(c) = d ∧ Sta`
t+

b2−b1
2

(c)

Therefore, because t′ + 1 ≥ t′ ≥ t+ b2−b1
2 , by using the lemma C.14 we have that:

dst`t′+1(c) = d (Hd)

Secondly, because 0 ≤ d < b2−b1
2 , we have that 0 ≤ d+ 1 ≤ b2−b1

2 .

So, by using the hypothesis LC`
t(b1, b2) and the corollary 5.4 with d+ 1, we have that:

dst`
t+

b2−b1
2

(b1 + (d+ 1)) = d+ 1 ∧ Sta`
t+

b2−b1
2

(b1 + (d+ 1)) (HL)

dst`
t+

b2−b1
2

(b2 − (d+ 1)) = d+ 1 ∧ Sta`
t+

b2−b1
2

(b2 − (d+ 1)) (HR)

We prove that d+ 1 ≤ max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

by case on c:

• If b1 ≤ c < b1+b2
2 , we have c = b1 + d, so b1 + (d+ 1) = c+ 1.

Therefore, by using HL, we have that:

dst`
t+

b2−b1
2

(c+ 1) = d+ 1 ∧ Sta`
t+

b2−b1
2

(c+ 1)

So, because t′ ≥ t+ b2−b1
2 , by using the lemma C.14 we have that:

dst`t′(c+ 1) = d+ 1

Therefore: d+ 1 ≤ max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

37

• If b1+b2+1
2 < c ≤ b2, we have c = b2 − d, so b2 − (d+ 1) = c− 1.

Therefore, by using HR, we have that:

dst`
t+

b2−b1
2

(c− 1) = d+ 1 ∧ Sta`
t+

b2−b1
2

(c− 1)

So, because t′ ≥ t+ b2−b1
2 , by using the lemma C.14 we have that:

dst`t′(c− 1) = d+ 1

Therefore: d+ 1 ≤ max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

We prove ¬Mid`
t′+1(c) by contradiction. If Mid`

t′+1(c) then, by using the lemma B.4, we have
that:

dst`t′+1(c) ≥ max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

So, by using Hd, we have that:

max
(

dst`t′(c− 1),dst`t′(c+ 1)
)
≤ d

But d+ 1 ≤ max
(

dst`t′(c− 1),dst`t′(c+ 1)
)

, hence the contradiction.

Remark. In the previous lemma there is some parity problems to fix, which should be proven in
the appendix or found in the Coq library.

Lemma (5.9 p.14: Each true Middle comes from a Light Cone).

∀`tm,¬Brd`
t(m) ∧Mid`

t(m)

⇒ LC`
t−d(m− d,m+ d)

∨LC`
t−(d+1)(m− (d+ 1),m+ d)

∨LC`
t−(d+1)(m− d,m+ (d+ 1))

where d = dst`t(m)

Proof. Let m be the “true” middle, which means that it is not a border. Notice that according
to the lemma B.10 p.24, we have d ≥ 1.

Firstly, we cannot have more than two true middles next to each other. Indeed, by (5) they
must have the same distance d, but if there are three true middles in a row, the middle at the
center will have a distance d+ 1, according to (6), hence the contradiction.

So, m may be alone, or have a middle with the same distance on its right or on its left, hence
the three cases of the lemma.

Let m` the left middle and let mr be the right middle. They are neighbors if there are two
middles, or we have m` = mr if there is only one middle.

Because m` and mr are middles, according to the lemma B.8 p.23, they are stable.
In order to ease the notation, let t be the date when m` and mr become stable for the first

time. Therefore, by (5), if they are equal they become the middle at t, and otherwise they
become the middles at t+ 1, hence the difference of time in the lemma.

Let ` be the layer. We prove by induction on 0 ≤ i ≤ d that:

Sta`t−i(m` − i) ∧ dst`t−i(m` − i) = d− i = dst`t−i(mr + i) ∧ Sta`t−i(mr + i)

∧ ∀ m` − i ≤ c ≤ mr + i,dst`t−i(c) ≥ d− i (Hi)

38

• H0 because m` and mr are stable at t and they have the same distance d.

• We assume Hi with i < d, and now we prove Hi+1.

According to (4), we have Sta`t−i(m` − i) because

1. Brd`
t−i(m` − i)

In that case, according to the lemma B.6 p.23, we have dst`t−i(m` − i) = 0.

So, by Hi we have d = i, which contradicts i < d.

2. or dst`t−i(m` − i) = 1 + dst`t−(i+1)(m` − i+ 1) with Sta`t−(i+1)(m` − i+ 1)

In that case, because Sta`t−(i+1)(m` − i + 1), according to the lemma C.14 p.32 we

have dst`t−(i+1)(m` − i+ 1) = dst`t−i(m` − i+ 1).

But by Hi we have dst`t−i(m` − i) = d− i and dst`t−i(m` − i+ 1) ≥ d− i.
So, d− i = dst`t−i(m` − i) = 1 + dst`t−(i+1)(m` − i+ 1) ≥ 1 + d− i, which is absurd.

3. or dst`t−i(m` − i) = 1 + dst`t−(i+1)(m` − (i+ 1)) with Sta`t−(i+1)(m` − (i+ 1)), which
is the only remaining case.

Therefore, we have Sta`t−(i+1)(m`−(i+1)), and dst`t−(i+1)(m`−(i+1)) = dst`t−i(m`−i)−1 =
d− (i+ 1) by Hi.

We prove Sta`t−(i+1)(mr + (i + 1)) and dst`t−(i+1)(mr + (i + 1)) = d − (i + 1) in the same

way, by using Sta`t−i(mr + i) in Hi.

It remains only to prove that for every m`−(i+1) ≤ c ≤ mr+(i+1), we have dst`t−(i+1)(c) ≥
d− (i+ 1). We prove it by contradiction.

Let c be a cell such that m` − (i+ 1) ≤ c ≤ mr + (i+ 1) and dst`t−(i+1)(c) < d− (i+ 1).

There exists a cell c′ which is a neighbor of c and m` − i ≤ c′ ≤ mr + i. Indeed, if
m`− i− 1 ≤ c ≤ m`− i+ 1 let c′ be c+ 1, and if m`− i+ 1 ≤ c ≤ mr + i+ 1 let c′ be c− 1.

According to the lemma B.3 p.22, we have:

dst`t−i+1(c′) ≤ 1 + dst`t−(i+1)(c) < 1 + d− (i+ 1) = d− i

which contradicts Hi.

Therefore, we proved Hi for every 0 ≤ i ≤ d. We remind that d ≥ 1, so we can apply Hi for
i = d− 1 and i = d:

• Hd implies that Sta`t−d(m`−d) and dst`t−d(m`−d) = 0 and Sta`t−d(mr+d) and dst`t−d(mr+

d) = 0, so according to the lemma B.9 p.24 we have Brd`
t−d(m` − d) and Brd`

t−d(mr + d).

• Hd−1 implies that for every cell m` − d < c < mr + d we have dst`t−d+1(c) ≥ 1, so by (3)

we have Ins`t−d+1(c).

Moreover, because d ≥ 1, we have that m− d, m, and m+ d are three different cells.
Therefore, by (7) we have LC`

t−d(m` − d,mr + d).

Corollary (5.10 p.14: A Middle induces a new Light Cone).

∀`tmd,Mid`
t(m) ∧ dst`t(m) = d ∧ d ≥ 2

⇒ ∀t′,
(

Brd`
t′(m− d)⇒ LC`+1

t (m− d,m)
)

∧
(

Brd`
t′(m+ d)⇒ LC`+1

t (m,m+ d)
)

39

Proof. Because dst`t(m) = d ≥ 2, Mid`
t(m), by using the contraposition of the lemma B.6, we

have that ¬Brd`
t(m).

The proof is made by case on the border. We assume Brd`
t′(m− d), but the proof in the case

Brd`
t′(m+ d) is similar.
Because ¬Brd`

t(m) and Mid`
t(m), by using the previous lemma we have that LC`

t−d(m −
d,m+ d) or LC`

t−(d+1)(m− (d+ 1),m+ d) or LC`
t−(d+1)(m− d,m+ (d+ 1)).

By definition (7), if LC`
t−(d+1)(m− (d+ 1),m+ d) then Ins`t−d(m− d). So, by case t′ ≤ t− d

or t − d ≤ t′ and by monotonicity, we obtain a contradiction dy using the lemma B.5. So we
have :

LC`
t−d(m− d,m+ d) ∨ LC`

t−(d+1)(m− d,m+ (d+ 1)) (HLC)

In every case, by using the lemma 5.4 we have for every i ≤ d that dst`t(m − d + i) = i and
Sta`t(m− d+ i).

So, by using the monotonicity, for every m− d < c < m, we have dst`t+1(c) + 1 = dst`t(c+ 1).

Moreover, by using the monotonicity, Sta`t+1(c).

Moreover, by using HLC and the definition (7) and the monotonicity, we have Ins`t+1(c).

Therefore, by definition (3), we have Ins`+1
t+1(c).

Moreover, by using HLC and the definition (7) and the monotonicity, we have Brd`
t+1(m−d).

So, by definition (2) Brd`+1
t+1(m− d).

Moreover, by using HLC and (the lemma 5.5 or the lemma 5.6) and the monotonicity, we
have Mid`

t+1(m). So, by definition (2) Brd`+1
t+1(m).

Moreover, by hypothesis d ≥ 2, so (m− d) + 2 ≤ m.
Therefore, by definition (7) we have LC`+1

t (m− d,m).

The following lemma will ease the proof of the lemma 5.12 p.14 (and maybe others ?):

Lemma D.1 (Right Staircase Lemma).

∀`tcd,dst`t+2(c) ≥ d+ 1

⇒ Sta`t+1(c+ 1) ∧ dst`t+1(c+ 1) = d+ 1

⇒ Sta`t(c+ 2) ∧ dst`t(c+ 2) = d

Proof. Let `, t, c and d.
We assume dst`t+2(c) ≥ d+ 1, Sta`t+1(c+ 1) and dst`t+1(c+ 1) = d+ 1.

Because Sta`t+1(c+ 1), by (4) we have three possible cases:

• Brd`
t+1(c+ 1)

So, according to the lemma B.6 p.23, we have dst`t+1(c + 1) = 0, which contradicts the

hypothesis dst`t+1(c+ 1) = d+ 1.

• dst`t+1(c+ 1) = 1 + dst`t(c) with Sta`t(c)

Because Sta`t(c), according to the lemma C.14 p.32 we have dst`t(c) = dst`t+2(c) ≥ d+ 1.

Therefore d+ 1 = dst`t+1(c+ 1) = 1 + dst`t(c) ≥ d+ 2, hence the contradiction.

• dst`t+1(c+ 1) = 1 + dst`t(c+ 2) with Sta`t(c+ 2)

which is the only remaining case.

40

Therefore, Sta`t(c+ 2), and dst`t(c+ 2) = dst`t+1(c+ 1)− 1 = d.

The result in the other way (from bottom-right to top-left) is admitted, because the proof is
similar.

Lemma (5.12 p.14: One Brd and one Mid at the previous layer of a Light Cone).

∀`tb1b2,LC`+1
t (b1, b2)

⇒
(

Brd`
t(b1) ∧ ¬Brd`

t(b2) ∧Mid`
t(b2) ∧ dst`t(b2) = b2 − b1

)
∨
(
¬Brd`

t(b1) ∧Mid`
t(b1) ∧ Brd`

t(b2) ∧ dst`t(b1) = b2 − b1
)

Proof. Because LC`+1
t (b1, b2), we have (7) that b1 + 2 ≤ b2.

Because LC`+1
t (b1, b2), we have (7) that b1 + 2 ≤ b2 and for every cell b1 < c < b2 that

Ins`+1
t+1(c), so by (3) we have Ins`t+1(c).

Because LC`+1
t (b1, b2), we have Brd`+1

t (b1) and Brd`+1
t (b2). So, by (2) and the lemma B.2

p.21, at the layer ` there is four possible cases :

1. Brd`
t(b1) and Brd`

t(b2)

In that case, because b1 + 2 ≤ b2 and for every cell b1 < c < b2 we have Ins`t+1(c), we have

LC`
t(b1, b2).

So, according to the corollary 5.5 p.12 or 5.6 p.13, we have Mid`

t+
b2−b1+1

2

(
b1+b2

2

)
.

Therefore (2) we have Brd`+1

t+
b2−b1+1

2

(
b1+b2

2

)
.

But Ins`+1
t+1

(
b1+b2

2

)
, so by monotony (lemma C.10 p.32) we have Ins`+1

t+
b2−b1+1

2

(
b1+b2

2

)
.

So, according to the lemma B.5 p.22, we have a contradiction.

2. ¬Brd`
t(b1) ∧Mid`

t(b1) and ¬Brd`
t(b2) ∧Mid`

t(b2)

3. Brd`
t(b1) and ¬Brd`

t(b2) ∧Mid`
t(b2)

4. ¬Brd`
t(b1) ∧Mid`

t(b1) and Brd`
t(b2)

Let d1 = dst`t(b1). We assume for the moment that ¬Brd`
t(b1) ∧Mid`

t(b1) so, according to
the lemma B.10 p.24, we have d1 ≥ 1. We prove by induction on 0 ≤ i ≤ d1 that:

Sta`t−i(b1 + i) ∧ dst`t−i(b1 + i) = d1 − i (Hi)

• Because Mid`
t(b1), according to the lemma B.8 p.23, we have Sta`t(b1).

Moreover, dst`t(b1) = d1, hence H0.

• Because Mid`
t(b1), by (5) we have that Sta`t−1(b1 + 1) and dst`t−1(b1 + 1) = d1 − 1 or d1.

If dst`t−1(b1 + 1) = d1, then according to the lemma D.1 p.40 we have Sta`t−2(b1 + 2) and

dst`t−2(b1 + 2) = d1 − 1.

So, by monotony (lemmas C.11 p.32 and C.14 p.32) we have Sta`t(b1), Sta`t(b1 + 1) and
Sta`t(b1 + 2) with dst`t(b1) = d1 = dst`t(b1 + 1) and dst`t(b1 + 2) = d1 − 1.

Therefore (5) Mid`
t+1(b1 + 1). So (2) Brd`+1

t+1(b1 + 1), which contradicts Ins`+1
t+1(b1 + 1),

according to the lemma B.5 p.22.

So dst`t−1(b1 + 1) = d1 − 1, hence H1.

41

• We assume Hi and Hi+1 for i ≤ d1 − 2 and prove Hi+2.

Because Hi we have dst`t−i(b1 + i) = d1 − i.

Because Hi+1 we have Sta`t−i−1(b1 + i+ 1) and dst`t−i−1(b1 + i+ 1) = d1 − i− 1.

According to the lemma D.1 p.40, we have Sta`t−i−2(b1 + i+ 2) and dst`t−i−2(b1 + i+ 2) =
d1 − i− 2, hence Hi+2.

Let d2 = dst`t(b2). In the same way, if ¬Brd`
t(b2) ∧Mid`

t(b2) then we prove by induction on
0 ≤ i ≤ d2 that:

Sta`t−i(b2 − i) ∧ dst`t−i(b2 − i) = d2 − i (H ′i)

If ¬Brd`
t(b1)∧Mid`

t(b1), according to Hd1
we have Sta`t−d1

(b1 + d1) and dst`t−d1
(b1 + d1) = 0.

So, according to the lemma B.9 p.24 we have Brd`
t−d1

(b1 + d1).

So, by monotony (lemma C.9 p.31) we have Brd`
t+1(b1 + d1).

If d1 < b2 − b1 then Ins`t+1(b1 + d1), which contradicts Brd`
t+1(b1 + d1), according to the

lemma B.10 p.24.
Therefore we have b2 − b1 ≤ d1.
In the same way, if ¬Brd`

t(b2) ∧Mid`
t(b2), we use H ′d2

to prove that b2 − b1 ≤ d2.
W can go back to our remaining cases:

2. In the second case, where both b1 and b2 are true middles, we have:

• According to Hb2−b1 , we have Sta`t−(b2−b1)(b2) and dst`t−(b2−b1)(b2) = d1 − (b2 − b1),

therefore by monotony d2 = dst`t(b2) = d1 − (b2 − b1) < d1.

• According to H ′b2−b1 , we have Sta`t−(b2−b1)(b1) and dst`t−(b2−b1)(b1) = d2 − (b2 − b1),

therefore by monotony d1 = dst`t(b1) = d2 − (b2 − b1) < d2.

Hence the contradiction.

3. In the third case, because Brd`
t(b1) according to the lemma B.6 p.23 we have d1 = 0.

Because ¬Brd`
t(b2) ∧Mid`

t(b2), we use H ′b2−b1 to prove that d1 = d2 − (b2 − b1)

Therefore d2 = b2 − b1.

4. In the fourth case, because Brd`
t(b2) according to the lemma B.6 p.23 we have d2 = 0.

Because ¬Brd`
t(b1) ∧Mid`

t(b1), we use Hb2−b1 to prove that d2 = d1 − (b2 − b1).

Therefore d1 = b2 − b1.

E Proofs for the Middles

The proofs of the following results are very detailed and written in a Coq style, in order to be
implemented. Therefore, for sake of clarity, we will only write and comment the results in the
section 6 p.15, and detail the proofs in this section.

Lemma (6.1 p.15: Paired Middles appear at the same time with the same distance).

∀`t1t2m1m2,Mid`
t1(m1) ∧Mid`

t2(m2) ∧ (m2 = m1 + 1 ∨m1 = m2 + 1)

⇒ Mid`
t1(m2) ∧ dst`t1(m1) = dst`t1(m2)

42

Proof. We assume that m2 = m1 + 1 (the case m1 = m2 + 1 is symmetrical). For sake of
simplicity, we note c1 = m1 − 1 and c2 = m2 + 1.

We assume that t1 ≤ t2 and we prove the result both for t1 and t2. Notice that because of
the middles, we have t1, t2 ≥ 1.

We note d1 = dst`t1(m1) and d2 = dst`t2(m2), and we prove that d1 = d2:

According to the lemma B.4 on Mid`
t1(m1) we have that :

d1 ≥ max
(

dst`t1−1(c1),dst`t1−1(m2)
)
≥ dst`t1−1(m2)

According to the lemma B.7 on Mid`
t1(m1), we have Sta`t1−1(m2). So, by monotonicity (lemma

C.14), dst`t1−1(m2) = d2. Therefore d1 ≥ d2.

According to the lemma B.4 on Mid`
t2(m2) we have that :

d2 ≥ max
(

dst`t2−1(m1),dst`t2−1(c2)
)
≥ dst`t2−1(m1)

We have two cases on t1 ≤ t2 :

• In the case t1 = t2, according to the lemma B.7 on Mid`
t2(m2), we have Sta`t2−1(m1). So,

by monotonicity (lemma C.14), dst`t2−1(m1) = d1.

• In the case t1 < t2, according to the lemma B.8 on Mid`
t1(m1) we have Sta`t1(m1). So, by

monotonicity (lemma C.14), dst`t2−1(m1) = d1.

In every case, we have d2 ≥ d1, and because we proved d1 ≥ d2, we have d1 = d2. So, in the
following d1 and d2 will be denoted by d.

Because dst`t1(m1) = d = dst`t1−1(m2), the middle m1 verifies the second case of the equation

(5). In particular, we have that Sta`t1−1(m1). So, by monotonicity (lemma C.14) we have

dst`t1−1(m1) = dst`t1(m1) = d.
We have two cases on d :

• If dst`t1−1(m2) = d = 0, because Sta`t1−1(m2), by (4) we have Brd`
t1−1(m2)... 2

• If dst`t1−1(m2) = d > 0 3, because Sta`t1−1(m2), by (4) we have two cases:

– dst`t1−1(m2) = 1 + dst`t1−2(m1) ∧ Sta`t1−2(m1)

In that case, because Sta`t1−2(m1), by monotonicity (lemma C.14 p.32) we have that

dst`t1−2(m1) = dst`t1(m1) = d.

Therefore d = dst`t1−1(m2) = 1 + dst`t1−2(m1) = 1 + d, hence the contradiction.

– dst`t1−1(m2) = 1 + dst`t1−2(c2) ∧ Sta`t1−2(c2).

So dst`t1−2(c2) = d−1, and by monotonicity (lemma C.14) we have dst`t1−1(c2) = d−1.

Moreover, because Sta`t1−2(c2), by monotonicity (lemma C.11) we have Sta`t1−1(c2).

Finally, because dst`t1−1(m2) = d2 and Sta`t1−1(m2), by monotonicity (lemma C.14)

we have dst`t1(m2) = d = dst`t1(m1).

Therefore, we have :

2The proof is not finished, but this case may not be necessary, because it cannot happen in the case ` = 0 by
axiom n > 2 and the definition (2) of Brd, and this lemma is only used in that case.

3In that case, because the distance is 0 at t = 0, we have t1 − 1 > 0, so we can write t1 − 2.

43

∗ dst`t1−1(m1) = d and dst`t1−1(c2) = d− 1, so :

dst`t1(m2) = d = max (d, d− 1) = max
(

dst`t1−1(m1),dst`t1−1(c2)
)

∗ Sta`t1−1(m1) and Sta`t1−1(m2) and Sta`t1−1(c2)

So, by the definition (5), we have Mid`
t1(m2).

The result can be proven for t2 too according to the monotonicity.

Proposition (6.3 p.15: Middles appear at the same time with the same distance).

∀`t1m1,¬Brd`
t1(m1) ∧Mid`

t1(m1)

⇒
(
∀t2m2,Mid`

t2(m2)⇒ Mid`
t1(m2) ∧ dst`t1(m1) = dst`t1(m2)

)
Proof. The proof is made by induction on `:

• In this case ` = 0.

Let t1 and m1 such that ¬Brd0
t1(m1) and Mid0

t1(m1).

Let t2 and m2 such that Mid0
t2(m2).

Because ` = 0, according to the lemma 5.2 there exists tLC such that LC0
tLC

(1, n). We

prove Mid`
t1(m2) and dst`t1(m1) = dst`t1(m2) by case on the parity of n:

– If n = n−1 + 1 is odd, then according to the corollary 5.5 we have Mid0
tLC+n−1

2
(n+1

2).

By contradiction, if m1 6= n+1
2 , then according to the lemma 5.8 we have that

¬Mid0
t1(m1), which contradicts the hypothesis Mid0

t1(m1). So m1 = n+1
2 .

By contradiction, if m2 6= n+1
2 , then according to the lemma 5.8 we have that

¬Mid0
t2(m2), which contradicts the hypothesis Mid0

t2(m2). So m2 = n+1
2 .

Therefore, m1 = m2, then by hypothesis Mid0
t1(m2), and we have dst0t1(m1) =

dst0t1(m2).

– If n = n−1+1 is even, then according to the corollary 5.6 we have that Mid0
tLC+n

2
(n
2)

and Mid0
tLC+n

2
(n
2 + 1).

By contradiction, if m1 6= n
2 and m1 6= n

2 + 1, then according to the lemma 5.8 we

have that ¬Mid0
t1(m1), which contradicts the hypothesis Mid0

t1(m1). So m1 = n
2 or

m1 = n
2 + 1.

By contradiction, if m2 6= n
2 and m2 6= n

2 + 1, then according to the lemma 5.8 we

have that ¬Mid0
t2(m2), which contradicts the hypothesis Mid0

t2(m2). So m2 = n
2 or

m2 = n
2 + 1.

The proof is made by case:

∗ If m1 = m2, then by hypothesis Mid0
t1(m2), and we have dst0t1(m1) = dst0t1(m2).

∗ If m1 6= m2, then m2 = m1 + 1 or m1 = m2 + 1. So, because Mid0
t1(m1) and

Mid0
t2(m2), according to the lemma 6.1 we have Mid0

t1(m2) and dst0t1(m1) =

dst0t1(m2).

44

• We assume the induction hypothesis:

∀t1m1,¬Brd`
t1(m1) ∧Mid`

t1(m1) (IH `)

⇒
(
∀t2m2,Mid`

t2(m2)⇒ Mid`
t1(m2) ∧ dst`t1(m1) = dst`t1(m2)

)
Let t1 and m1 such that ¬Brd`+1

t1 (m1) and Mid`+1
t1 (m1), and let d1 = dst`+1

t1 (m1).

According to the lemma 5.9, there exists t′1 = t1−d1 or t1− (d1 +1), b1 = m1−d1 or m1−
(d1 + 1), and b′1 = m1 + d1 or m1 + (d1 + 1) such that LC`+1

t′1
(b1, b

′
1).

Notice that the case b1 = m1 − (d1 + 1) and b′1 = m1 + (d1 + 1) is excluded, so b′1 − b1 =
2d1 or 2d1 + 1, but not 2d1 + 2.

Because LC`+1
t′1

(b1, b
′
1), according to the lemma 5.12, we have that:

either Brd`
t′1

(b1) ∧ ¬Brd`
t′1

(b′1) ∧Mid`
t′1

(b′1) ∧ dst`t′1(b′1) = b′1 − b1

or ¬Brd`
t′1

(b1) ∧Mid`
t′1

(b1) ∧ Brd`
t′1

(b′1) ∧ dst`t′1(b1) = b′1 − b1

We denote the border by b`1 and the middle by m`
1. In particular, we have that dst`t′1(m`

1) =

b′1 − b1 = 2d1 or 2d1 + 1.

Let t2 and m2 such that Mid`+1
t2 (m2), and let d2 = dst`+1

t2 (m2).

According to the same arguments, we have that LC`+1
t′2

(b2, b
′
2), and at the previous layer we

denote the border by b`2 and the middle by m`
2, with dst`t′2(m`

2) = b′2 − b2 = 2d2 or 2d2 + 1.

Because ¬Brd`
t′1

(m`
1) and Mid`

t′1
(m`

1) and Mid`
t′2

(m`
2), according to the induction hypothesis

IH `, we have that Mid`
t′1

(m`
2) and dst`t′1(m`

1) = dst`t′1(m`
2).

Because Mid`
t′1

(m`
2) and Mid`

t′2
(m`

2), according to the lemma 6.2 we have that dst`t′1(m`
2) =

dst`t′2(m`
2).

Therefore dst`t′1(m`
1) = dst`t′1(m`

2) = dst`t′2(m`
2).

So, because dst`t′1(m`
1) = 2d1 or 2d1 + 1 and dst`t′2(m`

2) = 2d2 or 2d2 + 1, according to the
lemma B.1 we have that d1 = d2.

Therefore dst`+1
t1 (m1) = d1 = d2 = dst`+1

t2 (m2).

It remains to prove that Mid`+1
t1 (m2).

Because ¬Brd`+1
t1 (m1) and Mid`+1

t1 (m1), according to the lemma B.10 we have that d2 =

d1 = dst`+1
t1 (m1) ≥ 1.

So dst`t′1(m`
2) = dst`t′2(m`

2) = 2d2 or 2d2 + 1 ≥ 2.

Moreover, because dst`t′1(m`
2) = dst`t′2(m`

2) = b′2 − b2, where b2 and b′2 are b`2 and m`
2 or the

reverse, we have b`2 = m`
2 − dst`t′1(m`

2) or b`2 = m`
2 + dst`t′1(m`

2).

Moreover, Mid`
t′1

(m`
2) and Brd`

t′2
(b`2).

Therefore, according to the lemma 5.10, we have LC`+1
t′1

(b2, b
′
2).

We prove Mid`+1
t1 (m2) by case on the parity of b′2 − b2 :

45

– If b′2−b2 is even, because b′2−b2 = 2d2 or 2d2+1, we have b′2−b2 = 2d2 so
b′2−b2

2 = d2.

Because b′2 − b2 is even, b′2 − b2 + 1 is odd. So, according to the lemma 5.5, we have

that Mid`+1

t′1+
b′2−b2

2

(
b2+b′2

2).

In that case (according to the previous results of the lemma 5.9), we have (see the
following remark) t′1 = t1 − d1 and b2 = m2 − d2 and b′2 = m2 + d2, so :

t′1 +
b′2 − b2

2
= t′1 + d2 = t′1 + d1 = t1

b2 + b′2
2

=
(m2 − d2) + (m2 + d2)

2
=

2m2

2
= m2

Therefore Mid`+1
t1 (m2).

– If b′2 − b2 is odd, because b′2 − b2 = 2d2 or 2d2 + 1, we have b′2 − b2 = 2d2 + 1 so
b′2−b2+1

2 = d2 + 1.

Because b′2 − b2 is odd, b′2 − b2 + 1 is even. So, according to the lemma 5.6, we have

that Mid`+1

t′1+
b′2−b2+1

2

(
b2+b′2−1

2) and Mid`+1

t′1+
b′2−b2+1

2

(
b2+b′2+1

2).

In that case (according to the previous results of the lemma 5.9), we have (see the
following remark) t′1 = t1 − (d1 + 1), so:

t′1 +
b′2 − b2 + 1

2
= t′1 + d2 + 1 = t′1 + d1 + 1 = t1

Morevover, there are two cases for b2 and b′2:

∗ b2 = m2 − (d2 + 1) and b′2 = m2 + d2. In that case:

b2 + b′2 + 1

2
=

(m2 − d2 − 1) + (m2 + d2) + 1

2
=

2m2

2
= m2

Therefore, because Mid`+1

t′1+
b′2−b2+1

2

(
b2+b′2−1

2), we have that Mid`+1
t1 (m2).

∗ b2 = m2 − d2 and b′2 = m2 + (d2 + 1). In that case:

b2 + b′2 − 1

2
=

(m2 − d2) + (m2 + d2 + 1)− 1

2
=

2m2

2
= m2

Therefore, because Mid`+1

t′1+
b′2−b2+1

2

(
b2+b′2+1

2), we have that Mid`+1
t1 (m2).

Remark. The remaining problems in the proposition come from the fact that the cases for the
form of the Light Cones “may” not be the same (in particular even or odd length) for the two
middles. Maybe we should prove that this is the case anyway because at a layer ` the Light
Cones have the same length ?

Lemma (6.4 p.16: Three true middles cannot be adjacent).

∀`tc,¬Brd`
t(c) ∧Mid`

t(c− 1) ∧Mid`
t(c) ∧Mid`

t(c+ 1)⇒ False

Proof. We obtain a contradiction by case on t:

46

• If t = 0 then (5) Mid`
0(c) is False.

• Else t = t′+1. By hypothesis ¬Brd`
t′+1(c), so we can use the proposition 6.3 to prove that:

dst`t′+1(c− 1) = dst`t′+1(c) = dst`t′+1(c+ 1)

This distance will be denoted by d.

By using the lemma B.7 on Mid`
t′+1(c), we have that Sta`t′(c− 1) and Sta`t′(c+ 1). So, by

using the lemma C.14 on both we have:

dst`t′(c− 1) = dst`t′+1(c− 1) = d

dst`t′(c+ 1) = dst`t′+1(c+ 1) = d

Because ¬Brd`
t′+1(c) and Mid`

t′+1(c), by using the lemma B.10 we have dst`t′+1(c) > 0. So
(6):

dst`t′+1(c) = 1 + min
(

dst`t′(c− 1),dst`t′(c+ 1)
)

= 1 + min (d, d)
= 1 + d

which contradicts dst`t′+1(c) = d.

Lemma (6.5 p.16: A true middle adjacent to a border has a distance = 1).

∀`tc,¬Brd`
t(c) ∧Mid`

t(c) ∧
(

Brd`
t(c− 1) ∨ Brd`

t(c+ 1)
)
⇒ dst`t(c) = 1

Proof. We prove the result by case on t:

• If t = 0 then (5) Mid`
0(c) is False, so we get a contradiction.

• Else t = t′ + 1. Because ¬Brd`
t′+1(c) and Mid`

t′+1(c), by using the lemma B.10 we have

dst`t′+1(c) > 0. So (6):

dst`t′+1(c) = 1 + min
(

dst`t′(c− 1),dst`t′(c+ 1)
)

But
(

Brd`
t′+1(c− 1) ∨ Brd`

t′+1(c+ 1)
)

.

So by using the lemma B.6 we have
(

dst`t′+1(c− 1) = 0 ∨ dst`t′+1(c+ 1) = 0
)

, and by using

the lemma C.13 we have
(

dst`t′(c− 1) = 0 ∨ dst`t′(c+ 1) = 0
)

.

Therefore, min
(

dst`t′(c− 1),dst`t′(c+ 1)
)

= 0, and dst`t′+1(c) = 1.

47

F Implementation in Coq

We began to write our presentation in Coq, but most of the work remains to be done. At least,
this technical report attests the faisability of the task. For the moment, we wrote in the following
Coq code:

• the definitions (from p.5 to p.8), both in boolean and propositional form, of the fields Inp,
Brd, Ins, Sta, Mid, and dst

• the proof of the lemmas 3.4 p.5 and 3.5 p.6, stating the equivalence between the boolean
and the propositional forms

• the proof of the lemma B.3 p.22 (Local Distance)

• the proof of the lemma C.2 p.25 (Ins monotone implies dst is increasing)

• the proof of the lemma B.5 p.22 (Brd and Ins are exclusive)

• the proof of the lemma B.6 p.23 (Distance of a Border)

• the proof of the lemma C.3 p.25 (Brd and Ins monotone implies a stable dst is constant)

Require Import Bool.
Require Import Coq.Arith.Compare_dec.
Require Import Coq.Arith.Max.
Require Import Coq.Arith.Min.
Require Import Coq.Arith.Lt.
Require Import Coq.Arith.PeanoNat.
Require Import Coq.Init.Nat.

(* Technical lemmas *)

Section le_min_max.

Lemma min_or :
forall m n, min m n = m ∨ min m n = n.

Proof. intros m n. destruct (Nat.le_ge_cases m n).
− left. apply min_l. apply H.
− right. apply min_r. apply H.
Qed.

Lemma min_le_min :
forall m1 m2 n1 n2, m1 <= m2 → n1 <= n2 → min m1 n1 <= min m2 n2.

Proof. intros m1 m2 n1 n2 Hm Hn. destruct (min_or m2 n2).
− rewrite → H. transitivity m1. apply le_min_l. apply Hm.
− rewrite → H. transitivity n1. apply le_min_r. apply Hn.
Qed.

Lemma max_le__and_le :
forall n1 n2 m, max n1 n2 <= m → (n1 <= m ∧ n2 <= m).

Proof. split.

48

− transitivity (max n1 n2). apply le_max_l. apply H.
− transitivity (max n1 n2). apply le_max_r. apply H.
Qed.

End le_min_max.

(* Most field F have the form: F l t c

where l is the layer/level, t the time, and c the cell/position *)

Definition Level := nat.
Definition Time := nat.
Definition Space := nat.

Section Evolution.

(* An evolution is given with the starting position(s) of the general(s)

and the number n of cells *)

Variable Evo : Set.
Variable size : Evo → nat.
Variable gen : Evo → Space → bool.

Variable evo : Evo.
Definition n := size evo.

(* The field dst is computed using boolean fields, but in our results

the propositions are more concise and correspond to the previous papers,

so we define every field both way and prove the equivalence *)

Inductive Inp : Time → Space → Prop :=
| Inp_O_c : forall c, gen evo c = true → Inp 0 c

| Inp_S_c : forall t c, Inp t c ∨ (Inp t (c−1) ∨ Inp t (c+1)) → Inp (S t) c.

Fixpoint inp t c :=
match t with

0 ⇒ gen evo c

| S t ⇒ inp t c || (inp t (c−1) || inp t (c+1))
end.

Lemma Inp_inp :
forall t c, Inp t c → inp t c = true.

Proof. induction t.
− intros c H. inversion H. assumption.
− simpl. intros c H. rewrite → orb_true_iff. rewrite → orb_true_iff.
inversion H. destruct H1 as [H1 | [H1 | H1]].
∗ left. apply IHt. assumption.
∗ right. left. apply IHt. assumption.
∗ right. right. apply IHt. assumption.

Qed.

Lemma inp_Inp :
forall t c, inp t c = true → Inp t c.

49

Proof. induction t.
− simpl. apply Inp_O_c.
− simpl. intros c Hor. apply Inp_S_c. rewrite → orb_true_iff in Hor.
rewrite → orb_true_iff in Hor. destruct Hor as [Hor | [Hor | Hor]].
∗ left. apply IHt. assumption.
∗ right. left. apply IHt. assumption.
∗ right. right. apply IHt. assumption.

Qed.

(* boolean fields are defined before proposition fields because of the if in dst.

The mutual definition of brd and ins must be split into smaller parts to work *)

Definition brd_0 t c := (inp t c) && ((c =? 1) || (c =? n)).

Definition brd_S (brd_l mid_l : Time → Space → bool) t c := (brd_l t c) || (mid_l t c).

Definition ins_0 t c := (inp t c) && ((1 <? c) && (c <? n)).

Definition ins_S (ins_l sta_l : Time → Space → bool) (dst_l : Time → Space → nat) t c :=
match t with

0 ⇒ false

| S t ⇒ (ins_l (S t) c) && ((sta_l (S t) c)
&& ((dst_l (S t) c <? dst_l t (c−1))
|| (dst_l (S t) c <? dst_l t (c+1))))

end.

(* dst, sta and mid are defined for every layer l

There may be a confusion between a function name_l and an argument name_l ? *)

Fixpoint dst_l (ins_l : Time → Space → bool) (t : Time) c :=
match t with

0 ⇒ 0
| S t ⇒ if (ins_l (S t) c) then 1 + min (dst_l ins_l t (c−1)) (dst_l ins_l t (c+1)) else 0
end.

Fixpoint sta_l (brd_l : Time → Space → bool) (dst_l : Time → Space → nat) t c :=
match t with

0 ⇒ brd_l 0 c

| S t ⇒ brd_l (S t) c || ((dst_l (S t) c =? 1 + dst_l t (c−1))
&& (sta_l brd_l dst_l t (c−1))

|| (dst_l (S t) c =? 1 + dst_l t (c+1))
&& (sta_l brd_l dst_l t (c+1)))

end.

Fixpoint mid_l (sta_l : Time → Space → bool) (dst_l : Time → Space → nat) t c :=
match t with

0 ⇒ false

| S t ⇒ ((max (dst_l t (c−1)) (dst_l t (c+1)) <? dst_l (S t) c) && (sta_l t (c−1)
&& sta_l t (c+1)))

|| ((max (dst_l t (c−1)) (dst_l t (c+1)) =? dst_l (S t) c) && (sta_l t (c−1)
&& (sta_l t (c+1)
&& sta_l t c)))

50

end.

(* Error: Cannot guess decreasing argument of fix.

Fixpoint brd l t c :=

match l with

0 ⇒ brd_0 t c

| S l ⇒ brd_S (brd l) (mid l) t c

end

with ins l t c :=

match l with

0 ⇒ ins_0 t c

| S l ⇒ ins_S (ins l) (sta l) (dst l) t c

end

with dst l t c := dst_l (ins l) t c

with sta l t c := sta_l (brd l) (dst l) t c

with mid l t c := mid_l (sta l) (dst l) t c

.

So substitutions must be made in the fixpoint to define only brd and ins,

and the fields dst, sta and mid are defined after. *)

Fixpoint brd l t c :=
match l with

0 ⇒ brd_0 t c

| S l ⇒ brd_S (brd l) (mid_l (sta_l (brd l) (dst_l (ins l))) (dst_l (ins l))) t c

end

with ins l t c :=
match l with

0 ⇒ ins_0 t c

| S l ⇒ ins_S (ins l) (sta_l (brd l) (dst_l (ins l))) (dst_l (ins l)) t c

end

.

Definition dst (l : Level) t c := dst_l (ins l) t c.

Definition sta l t c := sta_l (brd l) (dst l) t c.

Definition mid l t c := mid_l (sta l) (dst l) t c.

(* Mutual definition of the proposition fields *)

Inductive Brd : Level → Time → Space → Prop :=
| Brd_O_t_c : forall t c, (Inp t c ∧ (c = 1 ∨ c = n)) → Brd 0 t c

| Brd_S_t_c : forall l t c, (Brd l t c ∨ Mid l t c) → Brd (S l) t c

with Ins : Level → Time → Space → Prop :=
| Ins_O_t_c : forall t c, (Inp t c ∧ (1 < c ∧ c < n)) → Ins 0 t c

51

| Ins_S_0_c : forall l c, False → Ins (S l) 0 c

| Ins_S_S_c : forall l t c, (Ins l (S t) c ∧ (Sta l (S t) c ∧ (
dst l (S t) c < dst l t (c−1) ∨ dst l (S t) c < dst l t (c+1)
))) → Ins (S l) (S t) c

with Sta : Level → Time → Space → Prop :=
| Sta_l_O_c : forall l c, Brd l 0 c → Sta l 0 c

| Sta_l_S_c : forall l t c, (Brd l (S t) c

∨ ((dst l (S t) c = 1 + dst l t (c−1) ∧ Sta l t (c−1))
∨ (dst l (S t) c = 1 + dst l t (c+1) ∧ Sta l t (c+1)))

) → Sta l (S t) c

with Mid : Level → Time → Space → Prop :=
| Mid_l_O_c : forall l c, False → Mid l 0 c

| Mid_l_S_c : forall l t c,
(max (dst l t (c−1)) (dst l t (c+1)) < dst l (S t) c ∧ Sta l t (c−1) ∧ Sta l t (c+1))
∨ (max (dst l t (c−1)) (dst l t (c+1)) = dst l (S t) c ∧ Sta l t (c−1) ∧ Sta l t (c+1)

∧ Sta l t c)
→ Mid l (S t) c

.

(* Fields: Prop → bool *)

Lemma Brd_brd__Ins_ins__Sta_sta :
forall l, (forall t c, Brd l t c → brd l t c = true)

→ (forall t c, Ins l t c → ins l t c = true)
→ (forall t c, Sta l t c → sta l t c = true).

Proof. intros l HB HI. induction t.
− intros c H. inversion H. apply HB. assumption.
− intros c H. inversion H. apply orb_true_iff. destruct H2.
∗ left. apply HB. assumption.
∗ right. apply orb_true_iff. destruct H2.

+ left. destruct H2 as [Hd HS]. apply andb_true_iff. split.
−− apply Nat.eqb_eq. assumption.
−− apply IHt. assumption.

+ right. destruct H2 as [Hd HS]. apply andb_true_iff. split.
−− apply Nat.eqb_eq. assumption.
−− apply IHt. assumption.

Qed.

Lemma Brd_brd__Ins_ins__Mid_mid :
forall l, (forall t c, Brd l t c → brd l t c = true)

→ (forall t c, Ins l t c → ins l t c = true)
→ (forall t c, Mid l t c → mid l t c = true).

Proof. intros l HB HI. induction t.
− intros c H. inversion H. contradiction.
− intros c H. inversion H. apply orb_true_iff. destruct H2.
∗ left. destruct H2 as [Hd HS]. apply andb_true_iff. split.

+ apply Nat.leb_le. assumption.
+ destruct HS as [HS1 HS2]. apply andb_true_iff. split.
−− apply Brd_brd__Ins_ins__Sta_sta. assumption. assumption. assumption.

52

−− apply Brd_brd__Ins_ins__Sta_sta. assumption. assumption. assumption.
∗ right. destruct H2 as [Hd HS]. apply andb_true_iff. split.

+ apply Nat.eqb_eq. assumption.
+ destruct HS as [HS1 HS]. apply andb_true_iff. split.
−− apply Brd_brd__Ins_ins__Sta_sta. assumption. assumption. assumption.
−− destruct HS as [HS2 HS3]. apply andb_true_iff. split.
∗∗ apply Brd_brd__Ins_ins__Sta_sta. assumption. assumption. assumption.
∗∗ apply Brd_brd__Ins_ins__Sta_sta. assumption. assumption. assumption.

Qed.

(* l = 0 *)

Lemma BrdO_brdO :
forall t c, Brd O t c → brd O t c = true.

Proof. intros t c HB. inversion HB. destruct H. apply andb_true_iff. split.
− apply Inp_inp. assumption.
− apply orb_true_iff. destruct H0.
∗ left. apply Nat.eqb_eq. assumption.
∗ right. apply Nat.eqb_eq. assumption.

Qed.

Lemma InsO_insO :
forall t c, Ins O t c → ins O t c = true.

Proof. intros t c HI. inversion HI. destruct H. apply andb_true_iff. split.
− apply Inp_inp. assumption.
− destruct H0. apply andb_true_iff. split.
∗ apply Nat.leb_le. assumption.
∗ apply Nat.leb_le. assumption.

Qed.

(* l → S l *)

Proposition BrdIns_brdins :
forall l, (forall t c, Brd l t c → brd l t c = true)

∧ (forall t c, Ins l t c → ins l t c = true).

Proof. induction l.
− split.
∗ apply BrdO_brdO.
∗ apply InsO_insO.
− destruct IHl as [IHB IHI]. split.
∗ intros t c HBS. apply orb_true_iff. inversion HBS. destruct H0.

+ left. apply IHB. assumption.
+ right. apply Brd_brd__Ins_ins__Mid_mid. assumption. assumption. assumption.
∗ intros t c HIS. destruct t.

+ inversion HIS. contradiction.
+ inversion HIS. destruct H1 as [HI H1]. apply andb_true_iff. split.
−− apply IHI. assumption.
−− destruct H1 as [HS H1]. apply andb_true_iff. split.
∗∗ assert (Hgoal : sta l (S t) c = true). apply Brd_brd__Ins_ins__Sta_sta.

apply IHB. apply IHI. apply HS. apply Hgoal.

53

∗∗ apply orb_true_iff. destruct H1.
++left. apply Nat.leb_le. assumption.
++right. apply Nat.leb_le. assumption.

Qed.

(* Fields: bool → Prop *)

Definition Brd_correctness :=
forall l t c, brd l t c = true ↔ Brd l t c.

Lemma brd_Brd__ins_Ins__sta_Sta :
forall l, (forall t c, brd l t c = true → Brd l t c)

→ (forall t c, ins l t c = true → Ins l t c)
→ (forall t c, sta l t c = true → Sta l t c).

Proof. intros l Hb Hi. induction t.
− intros c H. apply Sta_l_O_c. apply Hb. apply H.
− intros c H. apply Sta_l_S_c. apply orb_true_iff in H. destruct H.
∗ left. apply Hb. assumption.
∗ right. apply orb_true_iff in H. destruct H.

+ left. apply andb_true_iff in H. destruct H as [Hd HS]. split.
−− apply Nat.eqb_eq in Hd. apply Hd.
−− apply IHt. apply HS.

+ right. apply andb_true_iff in H. destruct H as [Hd HS]. split.
−− apply Nat.eqb_eq in Hd. apply Hd.
−− apply IHt. apply HS.

Qed.

Lemma brd_Brd__ins_Ins__mid_Mid :
forall l, (forall t c, brd l t c = true → Brd l t c)

→ (forall t c, ins l t c = true → Ins l t c)
→ (forall t c, mid l t c = true → Mid l t c).

Proof. intros l Hb Hi. induction t.
− intros c H. inversion H.
− intros c H. apply Mid_l_S_c. apply orb_true_iff in H. destruct H.
∗ left. apply andb_true_iff in H. destruct H as [Hd H]. split.

+ apply Nat.leb_le in Hd. apply Hd.
+ apply andb_true_iff in H. destruct H as [Hs1 Hs2]. split.
−− apply brd_Brd__ins_Ins__sta_Sta. apply Hb. apply Hi. apply Hs1.
−− apply brd_Brd__ins_Ins__sta_Sta. apply Hb. apply Hi. apply Hs2.

∗ right. apply andb_true_iff in H. destruct H as [Hd H]. split.
+ apply Nat.eqb_eq in Hd. apply Hd.
+ apply andb_true_iff in H. destruct H as [Hs1 H]. split.
−− apply brd_Brd__ins_Ins__sta_Sta. apply Hb. apply Hi. apply Hs1.
−− apply andb_true_iff in H. destruct H as [Hs2 Hs3]. split.
∗∗ apply brd_Brd__ins_Ins__sta_Sta. apply Hb. apply Hi. apply Hs2.
∗∗ apply brd_Brd__ins_Ins__sta_Sta. apply Hb. apply Hi. apply Hs3.

Qed.

(* l = 0 *)

Lemma brdO_BrdO : forall t c, brd O t c = true → Brd O t c.

54

intros t c Hb. apply andb_true_iff in Hb. destruct Hb. apply Brd_O_t_c. split.
− apply inp_Inp. assumption.
− apply orb_true_iff in H0. destruct H0.
∗ left. apply Nat.eqb_eq. assumption.
∗ right. apply Nat.eqb_eq. assumption.

Qed.

Lemma insO_InsO : forall t c, ins O t c = true → Ins O t c.
intros t c Hi. apply andb_true_iff in Hi. destruct Hi. apply Ins_O_t_c. split.
− apply inp_Inp. assumption.
− apply andb_true_iff in H0. destruct H0. split.
∗ apply Nat.leb_le. assumption.
∗ apply Nat.leb_le. assumption.

Qed.

(* l → S l *)

Proposition brdins_BrdIns :
forall l, (forall t c, brd l t c = true → Brd l t c)

∧ (forall t c, ins l t c = true → Ins l t c).

Proof. induction l.
− split.
∗ apply brdO_BrdO.
∗ apply insO_InsO.
− destruct IHl as [IHb IHi]. split.
∗ intros t c HbS. apply Brd_S_t_c. apply orb_true_iff in HbS. destruct HbS.

+ left. apply IHb. apply H.
+ right. apply brd_Brd__ins_Ins__mid_Mid. apply IHb. apply IHi. apply H.
∗ intros t c HiS. destruct t.

+ inversion HiS.
+ apply Ins_S_S_c. apply andb_true_iff in HiS. destruct HiS as [HI HiS]. split.
−− apply IHi. apply HI.
−− apply andb_true_iff in HiS. destruct HiS as [HS Hd]. split.
∗∗ apply brd_Brd__ins_Ins__sta_Sta. apply IHb. apply IHi. apply HS.
∗∗ apply orb_true_iff in Hd. destruct Hd.

++left. apply Nat.leb_le in H. apply H.
++right. apply Nat.leb_le in H. apply H.

Qed.

(* Fields: Prop ↔ bool *)

Corollary brd_true_iff :
forall l t c, Brd l t c ↔ brd l t c = true.

Proof. split.
− apply BrdIns_brdins.
− apply brdins_BrdIns.
Qed.

Corollary ins_true_iff :
forall l t c, Ins l t c ↔ ins l t c = true.

55

Proof. split.
− apply BrdIns_brdins.
− apply brdins_BrdIns.
Qed.

Corollary sta_true_iff :
forall l t c, Sta l t c ↔ sta l t c = true.

Proof. split.
− apply Brd_brd__Ins_ins__Sta_sta. apply brd_true_iff. apply ins_true_iff.
− apply brd_Brd__ins_Ins__sta_Sta. apply brd_true_iff. apply ins_true_iff.
Qed.

Corollary mid_true_iff :
forall l t c, Mid l t c ↔ mid l t c = true.

Proof. split.
− apply Brd_brd__Ins_ins__Mid_mid. apply brd_true_iff. apply ins_true_iff.
− apply brd_Brd__ins_Ins__mid_Mid. apply brd_true_iff. apply ins_true_iff.
Qed.

(* Beginning of the proof of the monotonicity of the fields *)

Lemma dst_St :
forall l t c, dst l (S t) c = if (ins l (S t) c)

then 1 + min (dst l t (c−1)) (dst l t (c+1))
else 0.

Proof. reflexivity.
Qed.

Lemma dst_local :
forall l t c, dst l (S t) c <= 1 + min (dst l t (c−1)) (dst l t (c+1)).

Proof. intros l t c.
rewrite → dst_St. destruct (ins l (S t) c).
− reflexivity.
− apply le_0_n.
Qed.

Lemma ins__dst_incr :
forall l, (forall t c, Ins l t c → Ins l (S t) c) → (forall t c, dst l t c <= dst l (S t) c).

Proof. intros l HI. induction t.
− intro c. apply le_0_n.
− intro c. remember (S t) as St. rewrite → dst_St. rewrite → HeqSt.
rewrite → HeqSt in IHt. case_eq (ins l (S (S t)) c).
∗ intro HiSS. transitivity (S (min (dst l t (c − 1)) (dst l t (c + 1)))).
apply dst_local. apply le_n_S. apply min_le_min. apply IHt. apply IHt.
∗ intro HiSS. case_eq (ins l (S t) c).

+ intro H. apply ins_true_iff in H. apply HI in H. apply ins_true_iff in H.
apply eq_true_false_abs in H. contradiction. apply HiSS.

+ intro H. rewrite → dst_St. rewrite → H. reflexivity.

56

Qed.

Lemma brd__not_ins :
forall l t c, Brd l t c → (Ins l t c → False).

Proof. induction l.
− intros t c HB HI.
inversion HI. destruct H as [Hinp1 Hlt]. destruct Hlt as [Hlt1 Hlt2].
inversion HB. destruct H as [Hinp3 Hor]. destruct Hor.
∗ rewrite → H in Hlt1. apply lt_not_le in Hlt1. apply Hlt1. reflexivity.
∗ rewrite → H in Hlt2. apply lt_not_le in Hlt2. apply Hlt2. reflexivity.
− intros t c HB HI.
inversion HI. apply H0. destruct H0 as [HIlS H0]. destruct H0 as [HSlS HdS].
inversion HB. rewrite ← H1 in H3. destruct H3.
∗ apply (IHl (S t0) c). apply H3. apply HIlS.
∗ inversion H3. destruct H8.

+ destruct H8 as [Hd HSl]. apply le_S in Hd. apply le_S_n in Hd.
apply max_le__and_le in Hd. destruct Hd as [Hd1 Hd2]. destruct HdS.
−− apply (lt_not_le (dst l (S t0) c) (dst l t0 (c − 1))). apply H8. apply Hd1.
−− apply (lt_not_le (dst l (S t0) c) (dst l t0 (c + 1))). apply H8. apply Hd2.

+ destruct H8 as [Hdeq HSl].
assert (max (dst l t0 (c − 1)) (dst l t0 (c + 1)) <= dst l (S t0) c) as Hd.
rewrite → Hdeq. reflexivity.
apply max_le__and_le in Hd. destruct Hd as [Hd1 Hd2]. destruct HdS.
−− apply (lt_not_le (dst l (S t0) c) (dst l t0 (c − 1))). apply H8. apply Hd1.
−− apply (lt_not_le (dst l (S t0) c) (dst l t0 (c + 1))). apply H8. apply Hd2.

Qed.

Lemma brd_dst0 :
forall l t c, Brd l t c → dst l t c = 0.

Proof. intros l t c HB.
assert (ins l t c = false) as H.
− apply not_true_is_false. intro HI. apply ins_true_iff in HI.
apply (brd__not_ins l t c). apply HB. apply HI.
− destruct t.
∗ reflexivity.
∗ rewrite → dst_St. rewrite → H. reflexivity.

Qed.

Lemma brd__ins__sta_dst :
forall l, (forall t c, Brd l t c → Brd l (S t) c)

→ (forall t c, Ins l t c → Ins l (S t) c)
→ (forall t c, Sta l t c → dst l t c = dst l (S t) c).

Proof. intros l HB HI. induction t.
− intros c HS. inversion HS.
apply HB in H. apply brd_dst0 in H. rewrite → H. reflexivity.
− intros c HS. inversion HS. destruct H1.
∗ assert (dst l (S t) c = 0) as H3. apply brd_dst0. apply H1. rewrite → H3.
apply HB in H1. apply brd_dst0 in H1. rewrite → H1.
reflexivity.
∗ destruct H1.

57

+ destruct H1 as [Hd HSt]. apply IHt in HSt. rewrite → HSt in Hd.
apply Nat.le_antisymm.
−− apply ins__dst_incr. apply HI.
−− rewrite → Hd. transitivity (1 + min (dst l (S t) (c−1)) (dst l (S t) (c+1))).

apply dst_local. apply le_n_S. apply le_min_l.
+ destruct H1 as [Hd HSt]. apply IHt in HSt. rewrite → HSt in Hd.
apply Nat.le_antisymm.
−− apply ins__dst_incr. apply HI.
−− rewrite → Hd. transitivity (1 + min (dst l (S t) (c−1)) (dst l (S t) (c+1))).

apply dst_local. apply le_n_S. apply le_min_r.
Qed.

End Evolution.

58

