An ASM Thesis for BSP

Yoann Marquer and Frédéric Gava

Laboratory of Algorithms, Complexity and Logic (LACL)
University of Paris-East, Créteil, France
dr .marquer@gmail.com and gava@u-pec.fr

Abstract. The Gurevich’s thesis stipulates that sequential Abstract state
Machines (AsMs) capture the essence of sequential algorithms. On another
side, the Bulk-synchronous Parallel (Bsp) bridging model is a well known
model for HPC algorithm design. It provides a conceptual bridge between
the physical implementation of the machine and the abstraction available
to a programmer of that machine. The assumptions of the BSP model are
thus provide portable and scalable performance predictions on HPC sys-
tems. We follow Gurevich’s thesis and extend the sequential postulates
in order to intuitively and realistically characterise the BSP algorithms.

Key words: BSP, ASM, parallel algorithm, HPC, postulates, cost model.

1 Introduction

1.1 Context of the work

Nowadays, HPC (High Performance Computing) is the norm in many areas but
it remains as difficult to have well defined paradigms and a common vocabulary
as it is in the traditional sequential world. The problem arises from the difficulty
to get a tazonomy of computer architectures and frameworks: there is a zoo of
definitions of systems, languages, paradigms and programming models. Indeed,
in the HPC community, several terms could be used to designate the same thing,
so that misunderstandings are easy. We can cite parallel patterns [5,10] ver-
sus algorithmic skeletons [9]; shared memory (PRAM) versus thread concurrency
and Direct ReMote Access (DRMA); asynchronous send/received routines (MPI,
netp://mpi-torun.org/) VEI'SUS communicating processes (m-calculus).

In the sequential world, it is easier to classify programming languages within
their paradigm (functional, object oriented, etc.) or by using some properties of
the compilers (statically or dynamically typed, abstract machine or native code
execution). This is mainly due to the fact that there is an overall consensus on
what sequential computing is. For them, formal semantics have been often stud-
ied and there are now many tools for testing, debugging, cost analyzing, software
engineering, etc. In this way, programmers can implement sequential algorithms
using these language. And they characterize well the sequential algorithms.

This consensus is only fair because everyone informally agrees to what con-
stitutes a sequential algorithm. And now, half a century later, there is a growing
interest in defining formally the notion of algorithms [11]. Gurevich introduced
an aziomatic presentation (largely machine independent) of the sequential algo-
rithms in [11]. The main idea is that there is no language that truly represents
all sequential algorithms. In fact, every algorithmic book presents the algorithm

http://mpi-forum.org/

2 Yoann Marquer and Frédéric Gava

in its own way and programming languages give too much detail. An axiomatic
definition [11] of the algorithms has been mapped to the notion of Abstract state
Machine (AsM, a kind of Turing machine with the appropriate level of abstrac-
tion): Every sequential algorithm can be computed by an AsMm. This allows a
common vocabulary about sequential algorithms. This has been studied by the
ASM community for several years.

A parallel computer, or a multi-processor system, is a computer composed
of more than one processor (or unit of computation). It is common to clas-
sify parallel computers (Flynn’s taxonomy) by distinguishing them by the way
they access the system memory (shared or distributed). Indeed, the memory
access scheme influences heavily the programming method of a given system.
Distributed memory systems are needed for computations using a large amount
of data which does not fit in the memory of a single machine.

The set of postulates for sequential algorithms has been widely accepted by
the scientific community. Nevertheless, to our knowledge, there is not such a
work for HPC frameworks. First, due to the zoo of (informal) definitions and
second, due to a lack of realistic cost models of common HPC architectures. In
HPC, the cost measurement is not based on the complexity of an algorithm but
is rather on the execution time, measured using empirical benchmarks. Program-
mers are benchmarking load balancing, communication (size of data), etc. Using
such techniques, it is very difficult to explain why one code is faster than an-
other and which one is more suitable for one architecture or another. This is
regrettable because the community is failing to obtain some rigorous definitions
of what HPC algorithms are. There is also a lack of studying algorithmic com-
pleteness of HPC languages. This is the basis from which to specify what can or
cannot be effectively programmed. Finally, taking into account all the features
of all HPC paradigms is a daunting task that is unlikely to be achieved [10].
Instead, a bottom up strategy (from the simplest models to the most complex)
may be a solution that could serve as a basis for more general HPC models.

1.2 Content of the work

Using a bridging model [23] is a first step to this solution because it simplifies
the task of the algorithm design, their programming and simplifies the reasoning
of cost and ensures a better portability from one system to another. In computer
science, a bridging model is thus an abstract model of a computer which provides
a conceptual bridge between the physical implementation of the machine and the
abstraction available to a programmer of that machine. We conscientiously limit
our work to the Bulk-Synchronous Parallel (BSP) bridging model [2,21] because
it has the advantage of being endowed with a simple model of execution. We
leave more complex models to future work. Moreover, there are many different
libraries and languages for programming BSP algorithms. The best known are
the BSPLIB for ¢ [12] or JAVA [20], BSML [13], PREGEL [14] for big-data, etc.
Concurrent ASMs try to capture the more general definition of asynchronous
and distributed computations. We promote a rather different “bottom-up” ap-
proach consisting of restricting the model under consideration, so as to better

An ASM Thesis for BSP 3

take into account the physical architectures and in particular to highlight the
algorithm execution time, which is often too difficult to assess for general models.
As a basis to this work, we must give first an axiomatic definition of BSP
algorithms in the spirit of [11,15]. Basically, four postulates will be necessary.
With such postulates, we can extend the Asms of [11] to take into account the
BSP model of computation. Our goal is to define a convincing set of parallel al-
gorithms running in a predictable time and construct a model computing these
algorithms only. This can be summarized by the ALGOggp =ASMpgp. An inter-
esting and novel point of this work is that the BSP cost model is preserved.

1.3 Outline

The remainder of this paper is structured as follows: In Section 2 we first recall
the BSP model of computation and define the postulates; Secondly, in Section 3,
we give the operational semantics of ASMpgp and finally, we give the main re-
sult. Section 4 concludes the paper by giving some questions with their answers
(notably about the related work) and a brief outlook on future work.

2 Characterizing BSP algorithms

2.1 The BSP bridging model of computation

As the RAM model provides a unifying approach that can bridge the worlds of
sequential hardware and software, so valiant sought [23] for a unifying model
that could provide an effective (and universal) bridge between parallel hardware
and software. A bridging model [23] allows to reduce the gap between an abstract
execution (programming an algorithm) and concrete parallel systems (using a
compiler and designing/optimizing a physical architecture).

The direct mode BSP model [2,21] is a bridging model that simplifies the pro-
gramming of various parallel architectures using a certain level of abstraction.
The assumptions of the BSP model are to provide portable and scalable perfor-
mance predictions on HPC systems. Without dealing with low-level details of
parallel architectures, the programmer can thus focus on algorithm design. The
BSP bridging model describes a parallel architecture, an execution model, and
a cost model which allows to predict the performance of a BSP algorithm on a
given architecture. We now recall each of them.

A BSP computer can be specified by p computing units (processors), each
capable of performing one elementary operation or accessing a local memory
in one time unit. Processors communicate by sending a data to every other
processor in g time units (gap which reflects network bandwidth inefficiency),
and a barrier mechanism is able to synchronise all the processors in L time
units (“latency” and the ability of the network to deliver messages under a
continuous load). Such values, along with the processor’s speed (e.g. Mflops)
can be empirically determined for each architecture by executing benchmarks.

4 Yoann Marquer and Frédéric Gava

po n @ D3 . The time g.is thus. for. Collectively: deliv-
ering a 1-relation which is a collective ex-

l:%cnalputations change where every processor receives/sends

,’}\T at most one word. The network can deliver
communication an h-relation in time g x h. A BSP compu-

barrier tation is organized as a sequence of super-

steps (see Fig. 1). During a superstep, the
processors may perform computations on lo-
cal data or send messages to other processors.
Messages are available for processing at their destinations by the next superstep,
and each superstep is ended with the barrier synchronisation of the processors.

The execution time (cost) of a super-step s is the sum of the maximal of
the local processing, the data delivery and the global synchronisation times.
It is expressed by the following formula: Cost(s) = w® + h® x g + L where
w® =maxo<i<p(wf) is the local processing time on processor ¢ during super-step
s and h® =maxg<;<p(h{) and h{ is the maximal number of words transmitted
or received by the processor i. Some papers rather use the sum of words for A
but modern networks are capable of sending while receiving data. The total cost
(execution time) of a BSP algorithm is the sum of its super-step costs.

More comments on BSP are available in the appendix (Section B).

: next super-step
Flg 1 A BSP super-step.

2.2 Axiomatic characterization of BSP algorithms

We follow [11] in which states are full instantaneous descriptions of an algorithm
that can be conveniently formalized as first-order structures.

Definition 1 (Structure). A (first-order) structure X is given by:

1. A (potentially infinite) set U(X) called the universe (or domain) of X
2. A finite set of function symbols L(X) called the signature (language) of X
3. For every symbol s € L(X) an interpretation 5~ such that:

(a) If ¢ has arity 0 then &~ is an element of U(X)

(b) If f has an arity o > 0 then ?X is an application: U(X)* — U(X)

In order to have a uniform presentation [11], we considered constant symbols
in £(X) as 0-ary function symbols, and relation symbols R as their indicator
function yg. Therefore, every symbol in £(X) is a function. Moreover, partial
functions can be implemented with a special symbol undef, and we assume in
this paper that every £(X) contains the boolean type (—, A) and the equality.

Definition 2 (Term). A term of L(X) is defined by induction :

1. If ¢ has arity 0, then c is a term
2. If f has an arity « > 0 and t1,...,to are terms, then f (t1,...,ta) s a term

The interpretation T~ of a term t in a structure X is defined by induction on t:
1 Ift = ¢ is a constant symbol, then T* dof X
2. Ift = f(t1,...,ta) where f is a symbol of the language L(X) with arity o > 0

—X .
and ty,...,to are terms, then [f (tlx,...,tax)

An ASM Thesis for BSP 5

A formula F is a term with the particular form true | false |R (t1,...,ta) |2 F

|(Fy AFy) where R is a relation symbol (ie a function with output #rue™ or false)
and t1,...,t, are terms. We say that a formula is true (resp. false) in X if Y=
True”™ (resp. false). These notions are fully detailed in the appendix (Section A).

We now define the BSP algorithms as the objects verifying four postulates.
The computation for every processor is done in parallel and step by step.

Postulate 1 (Sequential Time) A BSP algorithm A is given by:

1. A set of states S(A);
2. A set of initial states I(A) C S(A);
3. A transition function T4 : S(A) — S(A).

An execution of A is a sequence of states Sez So, 51,52, ... such that Sy is an
initial state and for every t € N, Syy1 = 74(5%).

Instead of defining a set of final states for the algorithms, we will say that
a state S; of an execution is final if 74(S;) = S;. Indeed, in that case the
execution is: Sy, S1,...,5:-1,5:,S¢,.... So, from an external point of view, the
execution will seem to have stopped. We will say that an execution is terminal
if it contains a final state. In that case, its duration is defined by:

. def [min{t e N | 74 (Sy) = 7i1 (S, if the execution is terminal
time(A, Sp) = { { | 74(S0) a 0)} otherwise

The BSP model defines the machine with multiple processors which have
their own memory. Therefore, a state S; of the algorithm must be a p-tuple
(Xt Xf)l. Notice that p is not fixed for the algorithm, so A can have states
using different number of processors. In this paper, we will simply consider that
this number is preserved during a particular execution. In other words: the num-
ber of processors is fixed by the initial state.

If (X',...,X?) is a state of the algorithm A, then the structures X*,... X?
will be called processor memories or local memories. The set of the local mem-
ories of A will be denoted by M (A). Moreover, we are interested in the algorithm
and not a particular implementation (for example the name of objects), therefore
in the following postulate we will consider the states up to multi-isomorphism.

Definition 3 (Multi-Isomorphism).
Z) is a multi-isomorphism between two states (X',...,X") and (Y"',...,Y?) if
p=q and ? is a p-tuple of applications C1, ..., ¢p such that for every 1 <i <p,

i is an isomorphism between X® and Y.

Postulate 2 (Abstract States) For every BSP algorithm A:

1. The states of A are p-tuples of structures with the same finite signature L(A)

2. S(A) and I(A) are closed by multi-isomorphism;

3. The transition function T4 preserves the universes and the numbers of pro-
cessors, and commutes with multi-isomorphisms.

1 To simplify, we annotate units from 1 to p and not, as usual in HPC, from 0 to p—1.

6 Yoann Marquer and Frédéric Gava

For a BsP algorithm A, let X be a local memory of A, f € L(A) be a dynamic
a-ary function symbol, and aq, ..., aq, b be elements of the universe U(X). We
say that (f,a1,...,a,) is alocation of X, and that (f,a,...,aq.,b) is an update
on X at the location (f, a1, ...,as). For example, if z is a variable then (z,42) is
an update at the location x. But symbols with arity o > 0 can be updated too.
For example, if f is a one-dimensional array, then (f,0,42) is an update at the
location (f,0). If u is an update then X @ is a new structure of signature £(A)
and universe U (X) such that the interpretation of a function symbol f € L(A) is:

_Xou dof | O ifuz(f,?,b) (we noteﬁzal,...,aa)

f (7) = =X — .

/7 (@) otherwise

For example, in X @ (f,0,42), every symbol has the same interpretation than in
X, except maybe for f because 7 °"%**(0) = 42 and 7X*Y"* (0) = F¥ (a) oth-
erwise. We precised “maybe” because it may be possible that 7* (0) is already 42.

If ?X(ﬁ) = b then the update (f, ., b) is said trivial in X, because nothing
has changed. Indeed, if (f, a, b) is trivial in X then X & (f, a, b) = X.

If A is a set of updates then A is consistent if it does not contain two
distinct updates with the same location. Notice that if A is inconsistent, then
there exists (f, 7,()), (f777b’) € A with b # V. We assume in that case that
the entire set of updates clashes:

FXOA . def b if (f,d,b) € Aand A is consistent
/ (@) = ?X (@) otherwise

If X and Y are two local memories of the same algorithm A then there exists
a unique consistent set A = {(f,@,b) | f (@) =band f (@) # b} of non trivial
updates such that Y = X @& A. This A is called the difference between the two
local memories, and is denoted by ¥ © X.

Let X = (X',...,X") be a state of A. According to the transition function
Ta, the next state is TA(?), which will be denoted by (TA(Y)l, . ,TA(Y)p). We
denote by A*(A, Xz) ef TA(?)I.@XZ. the set of updates done by the i-th processor
of A on the state Y, and by Z(A, Y) < (AY(A, ?())7 o AP(A,)7)) the “multiset”
of updates done by A on the state X. In particular, if a state X is final, then
X)) =X, 50 A4, X)= 7.

Let A be a BsP algorithm and T be a set of terms of £L(A). We say that
two states (X',...,X?) and (Y"',...,Y?) of A coincide over T if p = ¢ and for
every 1 <14 < p and for every t € T we have ==
Postulate 3 (Bounded Exploration for Processors) For every BSP algo-
rithm A there exists a finite set T(A) of terms such that for every state
and 7, if they coincide over T(A) then Z(A, ?) = Z(A,?), i.e. for every
1 <4< p, we have A’(/LY) = A%A,?).

T(A) is called the exploration witness [11] of A. The interpretations of
the terms in T'(A) are called the critical elements, and we prove, in Section C
of the appendix, that every value in an update is a critical element:

Lemma 1 (Critical Elements). For every state (X',..., X?) of A, Vi 1<i<

p, if (f, . b)e Al(A, ?) then @ ,b are interpretations in X of terms in T(A).

An ASM Thesis for BSP 7

That implies that for every step of the computation, for a given processor, only a
bounded number of terms are read or written (amount of work). In other words,
each processor individually is a sequential algorithm.

Lemma 2 (Bounded Set of Updates). For every state (X',...,X?) of the

BSP algorithm A, for every 1 <i<p, #Ai(A,Y) 18 bounded, where #U is the
number of elements of the set U.

Notice that for the moment we make no assumption on the communication
between processors. Moreover, these three postulates are a “natural” extension
of the ones of [11]. And by “natural”, we mean that if we assume that p = 1
then our postulates are exactly the same:

Lemma 3 (A Single Processor is Sequential). An algorithm verifying the
first three postulates and with only one processor is a sequential algorithm.

We organize the sequence of states into supersteps. The communication
between the processor memories occurs only during a communication phase. In
order to do so, a BSP algorithm A will use two functions comp 4 and comm 4 in-
dicating if A runs computations or runs communications (followed by a barrier).

Postulate 4 (Supersteps phases) For every BSP algorithm A there exists
two applications comp, : M(A) — M(A) commuting with isomorphisms, and
commy : S(A) — S(A), such that for every state (X',..., XP?):

) (compa(X1),..., comp,(XP)) if there exists 1 <i <p
Ta (X5 XP) = such that comp 4 (X?) # X'
A
commy (Xl, . ,Xp) otherwise

A BSP algorithm is an object verifying these four postulates, and we denote
by ALGOpgp the set of the BSP algorithms. A state (Xl7 e 7Xp) will be said in
a computation phase if there exists 1 < ¢ < p such that comp 4 (X*) # X
Otherwise, the state will be said in a communication phase.

This requires some remarks. First, not only one processor performs the local
computations but all who can. Second, we do not specified the function comm 4
in order to be generic about which BSP library is used. We discuss in Section 3.3
the difference between comm 4 and the usual communication routines in the BSP
community. The communication function comm 4 keeps p.

Remembering that a state X is said to be final if TA(Y) - X. Therefore,
according to the fourth postulate, X must be in a communication phase which
is like a final phase that would terminate the whole execution as found in MPI.

We prove that the BSP algorithms satisfy, during a computation phase, that
every processor computes independently of the state of the other processors:

Lemma 4 (No Communication during Computation Phases). For every
states (X',...,X?) and (Y',...,Y9) in a computing phase, if X' and Y’ have
the same critical elements then Ai(A,Y) = AJ (A, ?).

8 Yoann Marquer and Frédéric Gava

3 BSP-ASM captures the BSP algorithms

The four previous postulates define the Bsp algorithms from an axiomatic view-
point but that does not mean that they have a model, or in, other words, that
they are defined from an operational point of view. In the same way that the
model of computation ASM captures the set of the sequential algorithms [11], we
prove in this section that the ASMpgp model captures the BSP algorithms.

3.1 Definition and operational semantics of ASM-BSP

Definition 4 (ASM Program [11]).

I f(ty,. . te) =t

| if F then IT; else II; endif

| par IIy]| ... ||II, endpar
where: [has arity a; F is a formula; t1, ..., ta, to are terms of L(X).
Notice that if n = 0 then par IIi||...|/II, endpar is the empty program. If

in if F then II; else II; endif the program Il is empty we will write simply
if F then ITy endif. An ASM machine [11] is a kind of Turing machine using
not a tape but an abstract structure X:

Definition 5 (ASM Operational Semantics).

A(f(tla"'7ta) = t0>X) déf {(f7HX77EX7%X)}

A(if F then IT; else II; endif, X) def A(IT;, X)

where{Z =14f F is true on X

1 = 2 otherwise

A(par IT1||...||IT, endpar,X) < A(IT,,X)U-- U A(Il,, X)

Notice that the semantics of the par is a set of updates done simultaneously,
which differs from an usual imperative framework. A state of a ASMpgp machine
is a p-tuple of memories (X1!,..., X?). We assume that the ASMpgp programs
are SPMD (single program Multiple Data) which means that at each step of com-
putation, the AsMpgp program II is executed individually on each processor.
Therefore IT induces a multiset of updates Z and a transition function 77:

A (x',. . xP)) (AU XY, .., AU X7))
o (XY, X)) € (XTe AL XY),..., XP @ A(IT, XP))

If 77(X) = X, then every processor has finished its computation steps. In
that case we assume that there exists a communication function to ensure the
communications between processors.

Definition 6. An ASMpsp machine M is a triplet (S(M), I(M), ar) such that:

1. S(M) is a set of tuples of structures with the same finite signature L(M);
S(M) and I(M) C S(M) are closed by multi-isomorphism;
2. v : S(M) — S(M) verifies that there exists a program II and an application
commys : S(M) — S(M) such that:
@ = d @) i) £ X

commas (X)) otherwise

An ASM Thesis for BSP 9

8. commy verifies that:
(1) For every state X such that TH(?) = ?, commy; preserves the universes
and the number of processors, and commutes with multi-isomorphisms
(2) There exists a finite set of terms T (commar) such that for every state
and Y with TH(Y) - X and (YY) =Y, if they coincide over T(commar)
then A(M,X) = A(M,Y).
We denote by AsMpsp the set of such machines. As before, a state X is said
final if TM(% — X. So if X is final then TU(Y) — X and commM(}) =X
The last conditions about the communication function may seem arbitrary,
but they are required to ensure that the communication function is not a kind
of magic device. For example, without these conditions, we could imagine that
comm); may compute the output of the algorithm in one step, or solve the halt-
ing problem. Moreover, we presented in this definition the conditions required to
prove the main theorem, but we discuss some issues in Section 3.3, and we con-
struct an example of such communication function in the appendix (Section D).

3.2 The BSP-ASM thesis

We prove that ASMpgp captures the computation phases of the Bsp algorithms in
three steps. First, we prove that during an execution, each set of updates is the in-
terpretation of an ASM program (Lemma 8 p.16). Then, we prove an equivalence
between these potentially infinite number of programs (Lemma 9 p.17). Finally,
by using the third postulate, we prove in Lemma 10 p.18 that there is only a
bounded number of relevant programs, which can be merged into a single one.

Proposition 1 (BSP-ASMs capture Computations of BSP Algorithms).
For every BSP algorithm A, there exists an ASM program IT4 such that for every
state X in a computation phase: A(Ila, X) = A(A, X).

Theorem 1. ALGOgsp = ASMpsp

Proof. (Sketch). The full proof available in the appendix p.33. It is made by mu-

tual inclusion. On the one hand, let A be the BSP algorithm (S(A), I(A),74). According

to the fourth postulate, there exists comp, and commy4 such that for every state X:
TA(Y) - { compA(?) if compA(}) # X

commy (X) otherwise

where comp 4 (Xl7 e ,Xp) = (compA(Xl), R compA(Xp)). Then, we use the the
Proposition 1 to prove that:
(X = { r, (X) if 7, (X) £ X
commy (X) otherwise

According to the Lemma 5 p.13, commy4 preserves the universes, the number of
processors, and commutes with multi-isomorphisms. And the other properties are im-
mediately true according to the first three postulates. Therefore A is a ASMpsp machine.

On the other hand, let M be the ASMpgp machine (S(M), I(M), 7ar). By definition,
there exists an ASM program I1 and an application comm)s such that:

(X)) = i (X) if i (X) # X

comm s (X) otherwise

10 Yoann Marquer and Frédéric Gava

We prove that M is a BSP algorithm by proving that it verifies the four postulates.
The first postulate is straightforward. The second requires the Lemma 7 p.15. For the
third, we prove that T'(IT) = {true} U Read (IT) U Write (II) (Definition 4 p.17) is an
exploration witness for 77 so T (M) = T'(II) UT (commyy) is for M. For the fourth, we
set comp,,(X) = X @ A(II, X) for every local memory X. So TH(?) = coTpA}()_()),
and we have: TM(X?) _ { compM(?) if compM(}) # X

comm s (X) otherwise
Therefore M is a BSpP algorithm. O

3.3 Cost model property and the function of communication

There is two more steps in order to claim that AsSMpsp objects are the BSP
bridging model algorithms: (1) To ensure that the duration corresponds to the
standard cost model and; (2) To solve issues about the communication function.

Cost model. If the execution begins with a communication, we assume that
no computation is done for the first superstep. We remind that a state X; is
in a computation phase if there exists 1 < ¢ < p such that comp,(X}) # X;.
The computation for every processor is done in parallel, step by step, and
these steps are synchronized. So, the cost in time of the computation phase
is w maxi<i<p (wi), where w; is the number of steps done by the processor 4
(on memory X*) during the superstep.

Then the state is in a communication phase, when the messages between
the processors are sent and received. Notice that comm may require several
steps in order to communicate the messages, which contrasts with the usual
approach in BSP where the communication actions of a superstep are considered
as one unit. But this approach would violate the third postulate, so we had to
consider a step-by-step communication approach, then consider these actions as
one communication phase. ASMpgp exchanges terms and we show in the appendix
how formally define the size of terms. But we can imagine a machine that must
further decompose the terms in order to transmit them (in bits for example).
We just assume that the data are communicable in time g for a 1-relation.

So, during the superstep, the communication phase requires h x g steps.
It remains to add the cost of the synchronization of the processors, which is
assumed in the usual BSP model to be a constant L. Therefore, we obtained a
cost, property which is sound with the standard BSP cost model.

A realization of the communication. An example of a communication func-
tion for the standard BSPLIB’s primitives (described in appendix Section D p.36)
read (bsp_get), write (bsp_put), send (bsp _send) and rcv (bsp_move) is pre-
sented in Section D. The main difficulty is to assign an exploration witness to
the communications.

Proposition 2 (A function of communication). A function of communica-
tion performing h-relation requiring at most h exchanges with routines for distant
readings/writings and point-to-point sending of data can be design using ASM.
One may argue that the last postulate allows the communication function
to do computations. To avoid it, we assume that the terms in the exploration

An ASM Thesis for BSP 11

witness T'(M) can be separated between T'(IT) and T(commys) such that T(IT) is
for the states in a computation phase, and that for every update (f, @,b) of a
processor X" in a communication phase, either there exists a term ¢ € T'(commy)
such that b =~ , or there exists a variable v € T(IT) and a processor X7 such

that b = tijxl (representation presented in the appendix, section D p.36). To
do a computation, a term like x+1 is required, so the restriction to a variable pre-
vents the computations of the terms in T'(IT). Or course, the last communication
step should be able to write in T'(IT), and the final result should be read in T'(IT).

4 Conclusion and Future Work

4.1 Summary of the Contribution

In computer science, a bridging model provides a common level of understanding
between hardware and software engineers. It provides software developers with
an attractive escape route from the world of architecture-dependent parallel soft-
ware [23]. The BsP bridging model allows the design of “immortal’ (efficient and
portable) parallel algorithms using a realistic cost model (and without any over-
specification requiring the use of a large number of parameters) that can fit most
distributed architectures. It has been used with success in many domains [2].

We have given an axiomatic definition of BSP algorithms by adding only one
postulate to the sequential ones for sequential algorithms [11] which has been
widely accepted by the scientific community. Mainly this postulate is the call of
a function of communication. We abstract how communication is performed, not
be restricting to a specific BSP library. We finally answer previous criticisms by
defining a convincing set of parallel algorithms running in a predictable time.

Our work is relevant because it allows universality (immortal stands for Bsp
computing): all future BSP algorithms, whatever their specificities, will be cap-
tured by our definitions. So, our ASMpgp is not just another model, it is a class
model, which contains all BSP algorithms.

This small addition allows a greater confidence in this formal definition com-
pared to previous work: Postulates of concurrent ASMs do not provide the same
level of intuitive clarity as the postulates for sequential algorithms. But our work
is limited to BSP algorithms even if it is still sufficient for many HPC and big-data
applications. We have thus revisited the problem of the “parallel ASM thesis’
i.e., to provide a machine-independent definition of BSP algorithms and a proof
that these algorithms are faithfully captured by AsMpgp. We also prove that the
cost model is preserved which is the main novelty and specificity of this work
compared to the traditional work about distributed or concurrent AsMms.

4.2 Questions and answers about this work

Why not use a BSP-Turing machine to simulate a BSP algorithm?
For sequential computing, it is known that Turing machines could simulate
every algorithm or any program of any language but without a constant factor

12 Yoann Marquer and Frédéric Gava

[1]. In this way, there is not an algorithmic equivalence between Turing machines
and common sequential programming languages.

Why do you use a new language ASMpsp instead of using ASMs only? Indeed,
each processor can be seen as a sequential ASM. So, in order to simulate one
step of a BSP algorithm using several processors, we could use pids to compute
sequentially the next step for each processor by using an ASM.

But if you have p processors, then each step of the BSp algorithm will be
simulated by p steps. This contradicts a temporal dilation [15]: Each step should
be simulated by d steps, where d is a constant depending only on the simulated
program. In that case, the simulation of a BSP algorithm by a sequential ASM
would require that p is constant, which means that our simulation would hold
only for a fixed number of processors, and not for every number.

Why are you limited to SPMD computations?

Different codes can be run by the processors using conditionals on the “id”
of the processors. For example “if pid=0 then codel