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Abstract—The modular exponentiation is crucial to the RSA
cryptographic protocol, and variants inspired by the Montgomery
ladder have been studied to provide more secure algorithms. In
this paper, we abstract away the iterative conditional branching
used in the Montgomery ladder, and formalize systems of
equations necessary to obtain what we call the semi-interleaved
and fully-interleaved ladder properties. In particular, we design
fault-injection attacks able to obtain bits of the secret against
semi-interleaved ladders, including the Montgomery ladder, but
not against fully-interleaved ladders that are more secure. We also
apply these equations to extend the Montgomery ladder for both
the semi- and fully-interleaved cases, thus proposing novel and
more secure algorithms to compute the modular exponentiation.

Index Terms—Cryptography, Countermeasures (computer),
Fault detection, Iterative algorithms, Public-key cryptography,
Security, Side-channel attacks

I. INTRODUCTION

A. Contribution
We present common algorithms used to compute the modu-

lar exponentiation, based on an iterative conditional bran-
ching, where a conditional branching depending on the se-
cret updates the value of a variable x on every iteration
of one/several loop(s). Amongst these algorithms the Mont-
gomery ladder, that uses a fresh variable y, satisfies desirable
properties against side-channel or fault-injection attacks.

In this paper, we formalize these properties with equations
corresponding to two families of cases: the semi-interleaved
ladders where the value of x or y may (depending on the
secret) depend only on its previous value, and the fully-
interleaved ladders where the value of x and y both depend
on both previous values.

We use our formalization to design novel algorithms for the
modular exponentiation, including a semi-interleaved ladder
with a mask updated at every iteration, and a fully-interleaved
ladder. We also propose an attacker model using fault-injection
able to obtain some bits of the secret in the semi-interleaved
cases (including the Montgomery ladder) but none in the fully-
interleaved cases, and a stronger variant of the attacker model
able to obtain all bits of the secret in the semi-interleaved
cases. The considered attacks cannot be used against the fully-
interleaved cases, but other attacks might exist.

This work was supported by the EU Horizon 2020 project TeamPlay
(https://www.teamplay-h2020.eu), grant number 779882.

input public a, n; secret k
1: x← 1
2: for i = d to 0 do
3: x← x2 mod n
4: if k[i] = 1 then
5: x← ax mod n
6: end if
7: end for
8: return x

output x = ak mod n

TABLE I
SQUARE AND MULTIPLY

input public a, n; secret k
1: x← 1
2: for i = d to 0 do
3: x← x2 mod n
4: if k[i] = 1 then
5: x← ax mod n
6: else
7: y ← ax mod n
8: end if
9: end for

10: return x
output x = ak mod n

TABLE II
SQUARE AND MULTIPLY ALWAYS

B. Organization of the Paper
As introduction, we present in Section II some related

works on the modular exponentiation and the Montgomery
ladder. In Section III we formalize the iterative conditional
branching, and we deduce the equations satisfied by the
semi-interleaved and fully-interleaved ladders, and thus the
requirements for ladderizable programs. In Section IV we
introduce two attacker models using fault injection techniques,
and compare the vulnerability of the non-, semi- and fully-
interleaved ladders. Finally, in Section V we detail how to
produce examples of the semi- and fully-interleaved ladders,
including novel variants of the Montgomery ladder.

II. RELATED WORKS

In this section, we introduce known algorithms for the
modular exponentiation, their relevance regarding security, and
the desirable properties of the usual Montgomery ladder.

A. Modular Exponentiation
Let k be a secret key, and k =

∑
0≤i≤d k[i] 2

i be its
binary expansion of size d + 1, i.e. k[i] is the bit i of k.
The square-and-multiply algorithm described in Table I com-
putes the (left-to-right) modular exponentiation ak mod n, by
using a

∑
0≤i≤d k[i]2i =

∏
0≤i≤d(a

2i)k[i]. This exponentiation is
commonly used in crypto-systems like RSA [1].

For every iteration, the multiplication ax is computed only
if k[i] = 1, which can be detected by observing execution
time1 [2] or power profiles2 by means of e.g. SPA (Simple

1Even observing the duration of the whole execution can leak the Hamming
weight of the secret key, and thus can narrow down the exploration space.

2A multiplication can be distinguished from a squaring, hence variants with
squaring only have been proposed in [3] and improved in [4].
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input public a, n; secret k
1: x← 1
2: y ← a mod n
3: for i = d to 0 do
4: if k[i] = 1 then
5: x← xy mod n
6: y ← y2 mod n
7: else
8: y ← xy mod n
9: x← x2 mod n

10: end if
11: end for
12: return x
output x = ak mod n

TABLE III
MONTGOMERY LADDER

1: x← init
2: for i = 1 to n do

3:
. . .

4: if secret then
5: x← ϕ (x)
6: else
7: x← ψ (x)
8: end if

9:
...

10: end for
TABLE IV

ITERATIVE CONDITIONAL
BRANCHING

Power Analysis3) [8], and thus leads to information leakage
from both time and power side-channel attacks.

To prevent SPA, regularity of the modular exponentiation
algorithms is required, which means that both branches of the
sensitive conditional branching perform the same operations,
independently from the value of the exponent. Thus, an else
branch is added with a dummy instruction [6] in the square-
and-multiply-always algorithm described in Table II.

But countermeasures developed against a given attack may
benefit another one [9]. Because the multiplication in the
else branch of this algorithm is a dummy operation, a fault
injected [10] in the register containing ax will eventually
propagate through successive iterations and alter the final
result only if k[i] = 1, thus leaking information. Therefore, an
attacker (see the attacker model in Section IV) able to inject
a fault in a given register at a given iteration can obtain the
digits of the secret key by comparing the final output with or
without fault, technique known as safe-error attack.

B. Montgomery Ladder
This is not the case in the algorithm proposed by Mont-

gomery [11] and described in Table III, where a fault injected
in a register will eventually propagate to the other one, and
thus will alter the final result, preventing the attacker to obtain
information. But, as described in Section IV, some information
on the last digits may still leak, weakening the protection
obtained from the ladder.

The Montgomery ladder is algorithmically equivalent [12]
to the square-and-multiply(-always) algorithm(s), in the sense
that x has the same value for every iteration. Actually, some
variants [13] of the square-and-multiply-always algorithm4

may be as resistant as the Montgomery ladder [17], both
by checking invariants [18] violated if a fault is injected. In
the case of the Montgomery ladder, the invariant y = ax is
satisfied for every iteration. These invariants are important for
the self-secure exponentiation countermeasures [19].

Note that the else branch in Table III is identical to
the then branch, except that x and y are swapped, which

3The power profile depends also on the values in the considered registers, so
computing a multiplication in every case is better against SPA but not against
CPA (Correlation Power Analysis) [5], even if standard blinding techniques
can prevent differential attacks [6], [7].

4See [14] for highly regular right-to-left variants, [15] for a generalization
to any basis and left-to-right/right-to-left variants, and [16] for their duality.

1: assert(secret ≤ bound)
2: for i = 0 to secret do

3:
...

4: end for

1: for i = 0 to bound do
2: if i ≤ secret then

3:
...

4: end if
5: end for

TABLE V
LOOP BOUNDED BY A SENSITIVE VARIABLE

1: x← init
2: y ← ` (init)
3: for i = 1 to n do
4: . . .
5: if secret then
6: x← f (x, y)
7: y ← ψ (y)
8: else
9: y ← f (y, x)

10: x← ψ (x)
11: end if
12: . . .
13: end for

TABLE VI
SEMI-INTERLEAVED LADDERS

1: x← init
2: y ← ` (init)
3: for i = 1 to n do
4: . . .
5: if secret then
6: x← f (x, y)
7: y ← g (x, y)
8: else
9: y ← f (y, x)

10: x← g (y, x)
11: end if
12: . . .
13: end for

TABLE VII
FULLY-INTERLEAVED LADDERS

provides also (partial5) protection against timing and power
leakage. Moreover, the variable dependency makes these vari-
ables interleaved, so this exponentiation is algorithmically
(but partially) protected against safe-error attacks. Finally, as
opposed to square-and-multiply-always in Table II, the code
in the else branch is not dead, so will not be removed by
compiler optimisations.

III. LADDER EQUATIONS

In this section, we formalize the iterative conditional
branching occuring in algorithms like the Montgomery ladder,
and deduce the requirements to optimize them with semi- or
fully-interleaved ladders.

A. Iterative Conditional Branching
In this paper, we focus on programs as in Table IV called

iterative conditional branching. It appears in programs like
the modular exponentiation, its counterpart the double-and-
add used for elliptic curve point multiplication [20], [21], or
the secure bit permutation in the McEliece cryptosystem [22]
attacked in [23]. It also appears naturally (Table V) when
trying to turn a loop on the secret into a conditional branching
depending on the secret, that can itself be balanced to remove
or reduce the dependency on the secret.

But our approach does not depend on the number/depth of
the considered loops, hence the dots in Table IV. We assume
only that the conditional branching uses only one variable x,
the multivariate case being future work (see Section VI).

Definition 1 (Iterative Conditional Branching). A program as
in Table IV is said with an (univariate) iterative conditional
branching with two (unary) functions ϕ and ψ.

B. Semi-Interleaved Ladders
To prevent information leakage from side-channels or fault

injections, we use another variable y in the algorithm described
in Table VI. As in the Montgomery ladder in Table III, we need
to find two functions ` and f such that for every iteration:

5The variables x and y may have different access time, which hinders
protection against timing leakage.



• y = ` (x), and
• x has the same value for every iteration as in Table IV.

y = ` (x) is satisfied at the initialization. By induction, let’s
assume y = ` (x) at the beginning of an iteration. In the then
branch we have x← f (x, y) then y ← ψ (y), thus in order to
have y = ` (x) satisfied at the end of an iteration the following
equation must hold:

∀x, ψ (` (x)) = ` (f (x, ` (x)))

and to have x updated to ϕ (x) during the iteration the
following equation must hold:

∀x, f (x, ` (x)) = ϕ (x)

In the else branch we have y ← f (y, x) then x ← ψ (x),
thus in order to have y = ` (x) satisfied at the end of an
iteration the following equation must hold:

∀x, f (` (x) , x) = ` (ψ (x))

and x is already updated to ψ (x) during the iteration.

Definition 2 (Semi-Ladderizable). Let P be a program with
a univariate iterative conditional branching with two unary
functions denoted ϕ and ψ. P is semi-ladderizable if there
exists a unary function ` and a binary function f such that,
for every considered value x:

ψ (` (x)) = ` (ϕ (x))

f (x, ` (x)) = ϕ (x)

f (` (x) , x) = ` (ψ (x))

(1)
(2)
(3)

For the square-and-multiply algorithm we have ϕ (x) = ax2

and ψ (x) = x2, and we know that it can be semi-ladderized by
using the Montgomery ladder with ` (x) = ax and f (x, y) =
xy, but we show in Section V that there are other solutions.
Note that to respect the form of the semi-interleaved ladder,
we should have written y ← yx and not y ← xy in the else
branch6 of the Montgomery ladder.

C. Fully-Interleaved Ladders
Unfortunately, the semi-interleaved ladder is vulnerable to

fault injection techniques, because in every branch at least
one variable depends only on its previous value and not the
previous value of both variables (see Section IV). Moreover, an
attacker able to determine whether the output of one operation
is used as the input to another one can [25] apply collision
attacks7 to deduce whether two following bits are the same. To
solve these issues, we propose in Table VII a fully-interleaved
ladder using three functions `, f and g.

As for the semi-interleaved ladders, y = ` (x) is satisfied at
the initialization. We assume again by induction that y = ` (x)
at the beginning of an iteration. In the then branch we have
x← f (x, y) then y ← g (x, y), thus in order to have y = ` (x)
satisfied at the end of an iteration the following equation must
hold:

∀x, g (f (x, ` (x)) , ` (x)) = ` (f (x, ` (x)))

6The former is actually better regarding vulnerability to the M safe-error
[17] or collision [24] attacks, showing that this method is good practice.

7A countermeasure proposed in [26] is to randomly blend variants of the
ladder, or compute the exponentiation by taking a random (bounded) walk.

and to have x updated to ϕ (x) during the iteration the
following equation must hold:

∀x, f (x, ` (x)) = ϕ (x)

In the else branch we have y ← f (y, x) then x← g (y, x),
thus, in order to have y = ` (x) satisfied at the end of an
iteration, the following equation must hold:

∀x, f (` (x) , x) = ` (g (f (` (x) , x) , x))

and to have x updated to ψ (x) during the iteration the
following equation must hold:

∀x, g (f (` (x) , x) , x) = ψ (x)

Definition 3 (Fully-Ladderizable). Let P be a program with
a univariate iterative conditional branching with two unary
functions denoted ϕ and ψ. P is fully-ladderizable if there
exists a unary function ` and two binary functions f and g
such that, for every considered value x:

g (ϕ (x) , ` (x)) = ` (ϕ (x))

f (x, ` (x)) = ϕ (x)

f (` (x) , x) = ` (ψ (x))

g (f (` (x) , x) , x) = ψ (x)

(4)
(5)
(6)
(7)

Note that Equation (2) is Equation (5) and Equation (3)
is Equation (6). Without surprise, if g is chosen such that
g (x, y) = ψ (y) then Equation (1) is a special case of Equa-
tion (4), and Equation (7) is satisfied. Thus, semi-interleaved
ladders are subcases of fully-interleaved ladders.

D. Ladderizable Programs
Theorem 4. Let P be a program with an iterative conditional
branching with two unary functions denoted ϕ and ψ. If P is
semi-ladderizable with ` and f , or fully-ladderizable with `,
f and g, then for every iteration of the ladder variant:

• y = ` (x)
• x is updated as in P :

x←
{
ϕ (x) if secret
ψ (x) otherwise

Thus, for every program with an iterative conditional
branching, if there exists ` and f satisfying the equations in
Definition 2 then the conditional branching can be rewritten
as a semi-interleaved ladder, or even better if there exists `, f
and g satisfying the equations in Definition 3 then it can be
rewritten as a fully-interleaved ladder.

Because in a semi- or fully-interleaved ladder the operations
performed are the same for both the then and the else
branch, this transformation is an algorithmic countermeasure
against side-channel attacks [2], [8]. We detail in Section IV
the impact of the semi- and fully-interleaved ladderization
against fault injection techniques. Then, to demonstrate the
concept, we construct examples of semi- and fully-interleaved
ladders in Section V.

IV. FAULT INJECTION

In this section, we introduce two attacker models using fault
injection techniques, and compare the vulnerability of the non-
, semi- and fully-interleaved ladders.



According to [10] a fault is a physical defect, imperfection
or flaw that occurs within some hardware or software compo-
nent, while an error is a deviation from accuracy or correct-
ness, and is the manifestation of a fault. Hardware/physical
faults can be permanent, transient or intermittent, while soft-
ware faults are the consequence of incorrect design, at speci-
fication or at coding time. Fault injection is defined [27] as
the validation technique of the dependability of fault tolerant
systems, which consists in performing controlled experiments
where the observation of the system’s behavior in presence of
faults is induced explicitly by the writing introduction (called
injection) of faults in the system.

A. Attacker Model
For the iterative conditional branching (Table IV) and the

semi- and fully-interleaved ladders (Tables VI and VII), we
assume as in the Montgomery ladder (Table III) that “secret”
is the condition k[i] = 1, where k[i] is the i-th bit of the secret
key k.

Definition 5 (Attacker Model). We assume that:
• The attacker wants to obtain the secret key stored in the

chip and copied in the register k.
• The attacker can run the program any number of times:

– inputting xinit and yinit, the initial values in the
register x and y,

– obtaining xfinal and/or yfinal, the final value(s) re-
turned by the program.

• A run consists of iterations i over8 1, . . . , n, where:
– k[i] is the i-th bit of k,
– xi and yi denote the values in the register x and y

between the iterations i− 1 and i.
• The attacker can Exi (resp. Eyi):

– inject a random fault9 (the affected variable is set to
a random value) in the register of x (resp. y),

– between the iterations i− 1 and i.

The attacker can run a program for the square-and-
multiply(-always) (Tables I and II) algorithm(s) for a given
input xinit, obtain a value xfinal, then run the program again
with the same input while injecting a fault Eyi in the register
y = ax between the iterations i− 1 and i, and obtain a value
xfault. If xfault = xfinal then k[i] = 0, otherwise k[i] = 1. This
can be done for every iteration (in any order), thus the attacker
can obtain that way all the bits of the secret key.

In this algorithm, because the current value in x determines
the next value in x, a faulted value Exi for an iteration i always
propagates to the next iteration Exi+1, which we denote by
Exi ⇒ Exi+1. To obtain the bit k[i], the attacker has exploited

8To simplify the notations, we assume in this section that the counter is
incremented (from 1 to n with a step 1), but the argument is similar for other
initial or final values, a decremented counter, and/or other step values.

9In the Montgomery ladder (Table III) the invariant y = ax is satisfied for
every iteration. So, if a random fault is injected in x or y, the violation of the
invariant allows the program to detect the fault [19] and thus to enhance the
appropriate fault policy, as stopping the program or switching to a random
key for the rest of the computation. This argument holds also for our semi-
and fully-interleaved ladders with y = ` (x).

that a fault in y = ax propagates to x, denoted Eyi ⇒ Exi+1,
only if k[i] = 1. As opposed to this non-ladderized variant, in
Tables VI and VII the values of x and y are interleaved, and
the fault propagation patterns are the following:

1) For the semi-interleaved ladder:
Exi ⇒ Exi+1

Eyi ⇒ Eyi+1

Exi ⇒ Eyi+1 only if k[i] = 0
Eyi ⇒ Exi+1 only if k[i] = 1

which means that a fault always propagates to the same
register, but propagates to the other depending on the
current bit of the secret key.

2) For the fully-interleaved ladder:
Exi or Eyi ⇒ Exi+1 and Eyi+1

which means that any fault in one register propagates in
every case to both.

The fully-interleaved ladder has a lower fault tolerance, i.e.
it is easier to disrupt the computation. This is not convenient
for properties like functionality, availability or redundancy,
but prevents an attacker from obtaining the secret key, thus
increases security. Thus, we reduced the information leakage
from fault injection by reducing also the fault tolerance.

The semi-interleaved ladder is more robust, but this comes
at the price of a fault propagation pattern depending on the
secret key, which can be exploited. Indeed, the attacker can
Eyn as in Figure 1 and compare the x output. If xfault = xfinal
then k[n] = 0, otherwise k[n] = 1. Thus, the attacker can
always obtain k[n], the last bit of the secret key.

k

x

y

. . . k[n− 1] k[n]

Exfinal

Eyn Eyfinal

1?

Fig. 1. Attack the Last Bit
If the obtained bit was 0 as in the left part of Figure 2,

the attacker can Eyn−1. In that case if xfault = xfinal then
k[n− 1] = 0, otherwise k[n− 1] = 1. This process can be
repeated until a 1 is found. If the obtained bit was 1 as in the
right part of Figure 2, the attacker can Exn−1. In that case if
yfault = yfinal then k[n− 1] = 1, otherwise k[n− 1] = 0. This
process can be repeated until a 0 is found.

k

x

y

. . . k[n− 1] 0

Exn Exfinal

Eyn−1 Eyn Eyfinal

1?

k

x

y

. . . k[n− 1] 1

Exn−1 Exn Exfinal

Eyn Eyfinal
0?

Fig. 2. Attack the Penultimate Bit

One may think that these processes can be alternated in
order to recover all the bits of the secret key, but if there is
a bit alternation, i.e. (k[i] , k[i+ 1]) = (0, 1) or (1, 0), then
the bits before i cannot be obtained, as illustrated in Figures 3
and 4. So, the attacker could obtain that way all the bits only
if the key is trivial, and it seems improbable that the attacker
can obtain that way more than a small number of bits.
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Fig. 3. Ex or Ey before 01
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Fig. 4. Ex or Ey before 10

Therefore, the vulnerability to fault injection can be sum-
marized in Table VIII. Against the attacker model described
in Definition 5, fully-interleaved ladders are more secure than
semi-interleaved ladders, which are more secure than without
interleaving at all. But we show in the next subsection that a
stronger attacker is able to obtain all the bits of the key from
the semi-interleaved ladders.
B. Stronger Attacker Model
Definition 6 (Stronger Attacker Model). We assume that:

• The stronger attacker has the same goal and means that
the attacker in Definition 5.

• The stronger attacker can also Ek>i = 0 (resp. Ek>i = 1):
– stuck-at [10] 0 (resp. 1) all the bits, or at least those
> i, of the register k

– between iterations i and i+ 1.

The stronger attacker is able to break the semi-interleaved
ladders by using the attack protocol described in Table IX
in order to obtain all the bits of the secret key10, where
EXE(Ek>i = 1) at Line 4 means that the studied program
is executed with inputs xinit, yinit and a stuck-at Ek>i = 1,
and EXE(Ek>i = 1, Exi) at Line 5 is the same but with a
fault Exi. In particular, if both xfinal and yfinal can be read,
then the Montgomery Ladder (Table III) can be broken (by
iterating over 0 to d). This attack does not work against fully-
interleaved ladders, but other attacks might exist, and a fully-
interleaved ladder is more difficult to obtain (when possible),
as discussed in Subsection V-C.

V. EXTEND THE MONTGOMERY LADDER

The purpose of this section is to provide concrete examples
of the ladder equations for cryptography, and to generalize the
idea behind the Montgomery ladder to improve its protection
against side-channel and fault injection attacks. To do that,
we assume that ϕ (x), ψ (x), f (x, y), g (x, y) and ` (x) are
quadratic polynomials with the following coefficients:

ϕ (x) = ϕ2x
2

ψ (x) = x2

f (x, y) = f20x
2 + f11xy + f02y

2 + f10x+ f01y + f00

g (x, y) = g20x
2 + g11xy + g02y

2 + g10x+ g01y + g00

` (x) = `1x+ `0
10Note that the iterations are reversed in the attack protocol.

non-interleaved All bits can be obtained.
semi-interleaved Some bits can be obtained:

• . . . 10 . . . 0 if xfinal can be read
• . . . 01 . . . 1 if yfinal can be read

fully-interleaved No bit can be obtained.

TABLE VIII
VULNERABILITY AGAINST THE ATTACK DESCRIBED FOR THE ATTACKER

MODEL FROM DEFINITION 5

1: FIx ← 0
2: for i = n to 1 do
3: if FIx = 1 then
4: (xfinal, yfinal)← EXE(Ek>i = 1)
5: (xfault, yfault)← EXE(Ek>i = 1, Exi)
6: if yfault = yfinal then
7: k[i]← 1
8: else
9: k[i]← 0

10: FIx ← 0
11: end if
12: else
13: (xfinal, yfinal)← EXE(Ek>i = 0)
14: (xfault, yfault)← EXE(Ek>i = 0, Eyi)
15: if xfault = xfinal then
16: k[i]← 0
17: else
18: k[i]← 1
19: FIx ← 1
20: end if
21: end if
22: end for
23: return k

TABLE IX
PROTOCOL TO ATTACK THE SEMI-INTERLEAVED LADDERS

More general quadratic polynomials, e.g. `2 6= 0 or more
complex ϕ (x) and ψ (x), can be investigated but the general
systems of equations tend to be complicated, and in this paper
we want to focus on the exponentiation algorithms. To ensure
that ϕ (x) = ϕ2x

2 and ` (x) = `1x + `0 depends on x, we
will assume that ϕ2 6= 0 and `1 6= 0.
A. Both Semi- and Fully-Interleaved Ladders

Equation (2) (resp. Equation (5)) f (x, ` (x)) = ϕ (x) for
the semi- (resp. fully-) interleaved cases is equivalent to:

f20 + f11`1 + f02`
2
1 = ϕ2

f11`0 + 2f02`1`0 + f10 + f01`1 = 0

f02`
2
0 + f01`0 + f00 = 0

Equation (3) (resp. Equation (6)) f (` (x) , x) = ` (ψ (x)) for
the semi- (resp. fully-) interleaved cases is equivalent to:

f20`
2
1 + f11`1 + f02 = `1

2f20`1`0 + f11`0 + f10`1 + f01 = 0

f20`
2
0 + f10`0 + f00 = `0

B. Semi-Interleaved Ladders
The remaining Equation (1) ψ (` (x)) = ` (ϕ (x)) for the

semi-interleaved cases is equivalent to:
`21 = `1ϕ2

2`1`0 = 0

`20 = `0
So, because `1 6= 0, we have `1 = ϕ2 and `0 = 0. Therefore

Equation (2) is equivalent to:
f20 + f11ϕ2 + f02ϕ

2
2 = ϕ2

f10 + f01ϕ2 = 0

f00 = 0



input public a, n; secret k
1: x← 1
2: y ← a mod n
3: c← a2 + 1 mod n
4: for i = d to 0 do
5: random m mod n
6: if k[i] = 1 then
7: z ← y2 mod n
8: x← ma(x2 + z) + (1−mc)xy mod n
9: y ← z

10: else
11: z ← x2 mod n
12: y ← ma(y2 + z) + (1−mc)yx mod n
13: x← z
14: end if
15: end for
16: return x
output x = ak mod n

TABLE X
SEMI-INTERLEAVED LADDER FOR THE EXPONENTIATION

and Equation (3) is equivalent to:
f20ϕ

2
2 + f11ϕ2 + f02 = ϕ2

f10ϕ2 + f01 = 0

f00 = 0
From f10 + f01ϕ2 = f10ϕ2 + f01 we deduce f10(ϕ2 −

1) = f01(ϕ2 − 1), which is always true without constraint
on ϕ2 if f10 = f01. Moreover, from f10 + f01ϕ2 = 0 we
obtain f10 = −f01ϕ2, thus from f10ϕ2 + f01 = 0 we obtain
f01(ϕ

2
2 − 1) = 0, which is always true without constraint on

ϕ2 if f01 = 0. Therefore we assume f10 = 0 = f01.
From f20+f11ϕ2+f02ϕ

2
2 = f20ϕ

2
2+f11ϕ2+f02 we deduce

f20(ϕ
2
2 − 1) = f02(ϕ

2
2 − 1), which is always true without

constraint on ϕ2 if f20 = f02. The remaining constraint is
f20(ϕ

2
2 + 1) + f11ϕ2 = ϕ2, which is equivalent to f20 =

ϕ2

ϕ2
2+1

(1 − f11). By assuming as in RSA that the coefficients
are integers there exists m such that 1 − f11 = m(ϕ2

2 + 1).
Thus, we have f20 = mϕ2 and f11 = 1−m(ϕ2

2 + 1).
Therefore, from ϕ (x) = ϕ2x

2 and ψ (x) = x2 the equations
require (for integer coefficients):

f (x, y) = mϕ2(x
2 + y2) + (1−m(ϕ2

2 + 1))xy

` (x) = ϕ2x
Note that if m = 0 then the solution in Table X is the

common Montgomery ladder. But m can be chosen randomly
for every iteration, providing a mask for the intermediate va-
lues and thus reducing the opportunity of information leakage.
C. Fully-Interleaved Ladders

Equation (4) g (ϕ (x) , ` (x)) = ` (ϕ (x)) for the fully-
interleaved cases is equivalent to:

g20ϕ
2
2 = 0

g11`1ϕ2 = 0

g11`0ϕ2 + g02`
2
1 + g10ϕ2 = `1ϕ2

2g02`1`0 + g01`1 = 0

g02`
2
0 + g01`0 + g00 = `0

So, because ϕ2 6= 0 and `1 6= 0, we have g20 = 0 from the
first equation, g11 = 0 from the second, and the remaining
constraints are:

g02`
2
1 + g10ϕ2 = `1ϕ2

2g02`1`0 + g01`1 = 0

g02`
2
0 + g01`0 + g00 = `0

According to Equation (6) f (` (x) , x) = ` (ψ (x)) =
`1x

2 + `0, so by using g20 = g11 = 0 we have:

g (f (` (x) , x) , x) = (g02 + g10`1)x
2 + (g01)x+ (g10`0 + g00)

Thus, Equation (7) g (f (` (x) , x) , x) = ψ (x) for the fully-
interleaved cases is equivalent to:

g02 + g10`1 = 1

g01 = 0

g10`0 + g00 = 0

Because g20 = g11 = g01 = 0 and we require g (x, y) =
g02y

2 + g10x+ g00 to depend on x and y, we have to assume
g02 6= 0 and g10 6= 0. By using g01 = 0 the remaining
constraints from Equation (4) are:

g02`
2
1 + g10ϕ2 = `1ϕ2

g02`1`0 = 0

g02`
2
0 + g00 = `0

Because g02 6= 0 and `1 6= 0, the second equation implies that
`0 = 0. Thus, the remaining constraints from Equation (4) and
Equation (7) are:

g02`
2
1 + g10ϕ2 = `1ϕ2

g02 + g10`1 = 1

g20 = g11 = g01 = g00 = 0

By using the second equation g02 = 1− g10`1, the first one is
equivalent to:

g10(ϕ2 − `31) = `1(ϕ2 − `1)
Because g10 6= 0 and `1 6= 0, note that ϕ2 = `31 ⇔ ϕ2 = `1,
in which case `31 = `1, thus ϕ2 = `1 = ±1. To remove the
constraint on ϕ2, we assume that ϕ2 6= `31, and thus g10 and
g02 depends only on ϕ2 and `1:

g10 = `1
ϕ2 − `1
ϕ2 − `31

g02 = 1− g10`1 = ϕ2
1− `21
ϕ2 − `31

g (x, y) = g02y
2 + g10x

=
1

ϕ2 − `31
(
ϕ2(1− `21)y2 + `1(ϕ2 − `1)x

)
Note that because `1 6= 0 and g10 6= 0 we have to assume
that, as opposed to the semi-interleaved cases, `1 6= ϕ2.
Moreover, because `0 = 0, the constraints from the common
Equations (5) and (6) can be simplified:

f20 + f11`1 + f02`
2
1 = ϕ2

f20`
2
1 + f11`1 + f02 = `1

f10 + f01`1 = 0

f10`1 + f01 = 0

f00 = 0

(L1)

(L2)
(L3)
(L4)

In order to have a non-trivial ladder ` (x) = `1x, we will
assume that `1 6= ±1. With (L4) − (L3) we obtain (f10 −
f01)(`1 − 1) = 0 thus f10 = f01, and with (L3) we have
f10(`1 + 1) = 0, so f10 = f01 = 0. With (L1) − (L2) we



obtain (f02 − f20)(`21 − 1) = ϕ2 − `1, so f02 = f20 +
ϕ2−`1
`21−1

.
Therefore, remain the following constraints:

f20(`
2
1 + 1) + f11`1 = ϕ2 − `21

ϕ2 − `1
`21 − 1

= `1 −
ϕ2 − `1
`21 − 1

f02 = f20 +
ϕ2 − `1
`21 − 1

f10 = f01 = f00 = 0

The first line being obtained from (L1) and the second from
(L2). Note that ϕ2 − `21 ϕ2−`1

`21−1
= `1 − ϕ2−`1

`21−1
is satisfied and

thus is not a constraint. Moreover, because `1 6= 0, by using
the second line, f11 can be written as:

f11 =
1

`1

(
`1 −

ϕ2 − `1
`21 − 1

− f20(`21 + 1)

)
=

1

`1

(
`31 − ϕ2

`21 − 1
− f20(`21 + 1)

)
Thus, we have:

f (x, y) = f20x
2 + f11xy + f02y

2

= f20x
2 +

1

`1

(
`31 − ϕ2

`21 − 1
− f20(`21 + 1)

)
xy

+

(
f20 +

ϕ2 − `1
`21 − 1

)
y2

= f20

(
x2 − `21 + 1

`1
xy + y2

)
+

1

`21 − 1

(
`31 − ϕ2

`1
xy + (ϕ2 − `1)y2

)
Finally, f20 has no constraint so, for sake of simplicity, we
assume f20 = 0 and obtain the following functions:

f (x, y) =
1

`21 − 1

(
`31 − ϕ2

`1
xy − (`1 − ϕ2)y

2

)
g (x, y) =

1

`31 − ϕ2

(
ϕ2(`

2
1 − 1)y2 + `1(`1 − ϕ2)x

)
` (x) = `1x

where `1 6= ϕ2 and where `1, `21 − 1 and `31 − ϕ2 should be
invertible. The former can be satisfied by checking whether
(`1−ϕ2) mod n = 0. The latter can be satisfied by using the
Extended Euclidean Algorithm (d, u) ← EEA(v, n), where
uv = d mod n, such that if d = 1 then v is invertible
modulo n and v−1 = u mod n. Note that when `1 is chosen,
these coefficients are constant during the iterative conditional
branching, thus they can be pre-computed at the beginning
of the algorithm in Table XI. These computations cause an
overhead that does not depend on the secret, thus trading
execution time and energy consumption for more security. If
no such `1 exists then the algorithm returns an error.

We provide in Table XII a comparison of complexities
for the Montgomery, semi- and fully-interleaved ladders. The
complexities are given in terms of cost per key bit, where
M stands for multiplication, S for squaring and A for addi-
tion/subtraction, all modulo n. We did not include the cost
of the pre-computations, which is far from negligible for the
fully-interleaved ladder in Table XI.

input public a, n; secret k
1: `← 1
2: do
3: if ` = n− 1 then
4: return error
5: else
6: `← `+ 1
7: end if
8: v0 ← `− a mod n
9: (d1, u1)← EEA(`, n)

10: v2 ← `2 − 1 mod n
11: (d2, u2)← EEA(v2, n)
12: v3 ← `3 − a mod n
13: (d3, u3)← EEA(v3, n)
14: while v0 mod n = 0 ∨ d1 6= 1 ∨ d2 6= 1 ∨ d3 6= 1
15: c0 ← u1u2v3 mod n
16: c1 ← −v0u2 mod n
17: c2 ← av2u3 mod n
18: c3 ← `v0u3 mod n
19: x← 1
20: y ← `
21: for i = d to 0 do
22: if k[i] = 1 then
23: z ← y2 mod n
24: x← c0xy + c1z mod n
25: y ← c2z + c3x mod n
26: else
27: z ← x2 mod n
28: y ← c0yx+ c1z mod n
29: x← c2z + c3y mod n
30: end if
31: end for
32: return x
output x = ak mod n or error

TABLE XI
FULLY-INTERLEAVED LADDER FOR THE EXPONENTIATION

Montgomery Semi-Interleaved Fully-Interleaved
M + S 5M + 2S + 3A 5M + S + 2A

TABLE XII
COST OF THE MONTGOMERY, SEMI- AND FULLY-INTERLEAVED LADDERS

While investigating the fully-interleaved cases, we found
another solution shown but not detailed in Table XIII as
additional material for this paper. It is a modular exponen-
tiation for bases of the form a = b2(b2 + b − 1) where
b is invertible, for instance, b = n − 1. Actually, if b is
not invertible then the initialization could be x ← b and
1 ← 1 mod n instead, in which case the result would be
x = bd+1(b2(b2 + b− 1))k mod n where bd+1 is public. Note
also that this time the condition is k[i] = 0.

VI. CONCLUSION AND FUTURE WORK

In this paper, we abstract away the algorithmic strength
of the Montgomery ladder against side-channel and fault-
injection attacks, by defining semi- and fully-ladderizable
programs. We designed also fault-injection attacks able to
obtain some/all bits of the secret key from the semi-interleaved
ladders, like the Montgomery ladder, but none from the fully-
interleaved ladders. As examples, we also provided for the
modular exponentiation a better semi-interleaved ladder using
a random mask updated at every iteration, a fully-interleaved
ladder depending on an appropriate ladder constant, and a
simpler fully-interleaved ladder for some bases.

The algorithm in Table XI is a general fully-interleaved
ladder for the exponentiation, and depends on the existence of
a ladder constant `. Its existence is a mathematical problem



input public b, n; secret k
1: x← 1
2: y ← b−1 mod n
3: for i = d to 0 do
4: if k[i] = 0 then
5: x← b2(b+ 1)y2 − b2xy mod n
6: y ← (b+ 1)x− b(b2 + b− 1)y2 mod n
7: else
8: y ← b2(b+ 1)x2 − b2yx mod n
9: x← (b+ 1)y − b(b2 + b− 1)x2 mod n

10: end if
11: end for
12: return x
output x = (b2(b2 + b− 1))k mod n

TABLE XIII
SIMPLER FULLY-INTERLEAVED LADDER FOR SOME BASES

that should be investigated to ensure that the proposed solution
is relevant. Moreover, obtaining a formula for ` depending
only on a and n would reduce the overhead of the algorithm.
Because in RSA we have n = pq with p, q primes, verifying
whether a solution exists or not might be easier, but a formula
for ` should not depend on p, q because they are secret.

We have only investigated the univariate case for con-
ditional branching, but the multivariate case may be
of interest. For instance, a multi-variable polynomial∑

0≤n≤d

∑
n1+···+nk=n cn1,...,nk

∏
1≤i≤k x

ni
i can be repre-

sented by a multidimensional array of coefficients, and thus
the manipulation of equations in Section V could be handled
by using matrix operations.

Finally, the double-and-add and the secure bit permutation
algorithms mentioned in Subsection III-A could be investi-
gated as well, providing more examples to demonstrate the
generality of the method described in this paper.
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