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Abstract

The abstract state machines (of Y. Gurevich) capture all sequential
algorithms, so we define the set of polytime algorithms as the set of all
programs (from ASM) computed in polynomial time . Then we construct
an imperative programming language (P ) using bounded loop with es-
cape and running with general data structures, that compute all and only
polytime algorithms in lock step (one step in the ASM is simulated by k
steps in P ).

Context

For a long time there are many tentative to capture the set of functions com-
putable in polynomial time ([BC92, Nig05] and [Bon06]). Of course the main
motivation is to find ”pleasant” syntactical (and semantical) languages to cap-
ture this set. Sometime, the main motivation is to capture more algorithms
than the previous models or to give simpler method to decide a program is
computable in PTIME.

Nevertheless, as far as we know, there is no definition of the ultimate set
of algorithms that we could reach by some programming languages (limited
to PTIME). The study of weakness or supposed weakness of programming
languages is a whole field of research by studying the algorithmic power of
some programming languages (essentially total programming languages because
they match well known classes of total functions). All approaches (except in
[APV11]) consider the lacuna of different languages see [Col89, Col96, CF98] for
usual primitive recursion and [Mos03, vdD03] for more sophisticated recursion
schemas): for instance, the minimum problem is such a well known lacuna (it
refers to the fact that the usual algorithm that decrements alternatively its two
inputs and stops when it achieves to read one of its inputs cannot be simulated
by some programming languages; the number of steps to find the minimum is
proportional to the smaller inputs but, in many programming languages this
algorithm is not representable with the same complexity).

In the other side, from now thirty years, there is an interest in defining
formally the notion of algorithms [Mos01, Gur00a] and some of these definitions
allow to specify some classes of algorithms (in [Gur93], [Gur00a] and [DG08]);
an axiomatic definition is mapped to the notion of abstract state machine with a
strict lock-step simulation (see [DDG97] for a definition of simulation and strict
lock-step1). The abstract state machines are a kind of super Turing machine
that works not on simple tape (with finitary alphabets) but on multi–sorted
algebras (see the point of view in [GV10]). A program is a finite set of rules
that updates terms. It is shown in [Mar14], that the power of expression is
essentially in the fact that data structures are modeled within a first order
structure rather than in the structure of controls.

In [APV11, MV09] a class of primitive recursive algorithms APRA is defined
for the basic data structure of (unary) integer coming from the abstract state

1↑ The algorithms allow to update simultaneously a finite amount of data.
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machine theory. From there, two imperative programming languages and one
functional programming languages are proved to be complete for this set of
algorithms; that is, all algorithms defined in APRA can be written in those
languages without lost of time complexity (the simulation is in O(1)).

But the class of primitive recursive algorithms is too vast and most of the
algorithms is intractable. So there is a challenge to capture the set of algorithms
that have time of computation in PTIME. In [Nig05], a Loop programming lan-
guage is presented and properties are found to capture PTIME on data structure
such as stack, trees or graphs.

Following [APV11], we prove that one can define a programming language
that capture exactly the set of of polynomial time algorithms (AlgoPol ). This
language allows all first-order structures as data structures and limits only the
use of iteration bounds to be inputs.

The paper is organized as follows: the notion of fairly simulation and a
polytime language (LoopCstat) are described in the first section. The second
section is devoted to show that the familly of languages with bounded loop
can be simulated by ASM (in strictly lock-step), so LoopCstat is simulated by
ASM in polytime. Reciprocally, in the third section, we prove that all polytime
ASM are captured by LoopCstat. We conclude that LoopCstat is algorithmically
complete for polytime algorithms.

1 Preliminaries

Usually in computability theory, the aim is to prove if some functions can be
simulated in a computation model, but this is only an input-output result. In
this paper we are interested in a simulation of the whole execution. Our aim
is to find a programming language which can simulate every execution of the
polytime algorithms.

We consider well known the definition of algorithms considered by the three
postulates of Y. Gurevich, as well as the algorithmic model of Abstract State
Machines (ASM). But reader can have a look at appendice p.??. We intro-
duce in this section, the notion of simulation that is necessary to show the
completeness of our programming language LoopCstat for the set of algorithms
that are computable in Ptime. The language is defined in subsection 2.2 as its
operational semantics.

1.1 First Order Structures

Definition 1.1. A (first-order) structure X is defined by:

1. an infinite1 set U(X) called the universe of X

1↑ Usually the universe is only required to be non-empty, but we will define unary integers
p.5 so we need the universe to be at least countable.
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2. a finite1 set of function symbols L(X) called the language of X

3. for each symbol s ∈ L(X) an interpretation sX such that:

a. if c has arity 0 then cX is an element of U(X)

b. if f has an arity α > 0 then f
X

is an application: U(X)α → U(X)

In our paper we follow the presentation of Yuri Gurevich2. In particular,
the constant symbols are considered as function symbols with arity 0. The
interpretation of a function is total by default, so we use a special symbol undef
to define partial functions:

1. Dom(f,X) =def {(a1, . . . , aα) ∈ U(X)α | fX(a1, . . . , aα) 6= undef
X}

2. Im(f,X) =def {f
X

(a1, . . . , aα) ∈ U(X) | (a1, . . . , aα) ∈ Dom(f,X)}

The booleans B are defined as usual. The constructors are true and false

interpreted by true
X 6= false

X
, and the operations are ¬ and ∧ defined only on

booleans by:

1. ¬X(true
X

) = false
X

¬X(false
X

) = true
X

2. ∧X(true
X
, true

X
) = true

X

∧X(true
X
, false

X
) = false

X

∧X(false
X
, true

X
) = false

X

∧X(false
X
, false

X
) = false

X

As usual, the other connectives can be defined with them, but in Gurevich’s
proof only ¬ and ∧ are required:

1. (A ∨B) =def ¬(¬A ∧ ¬B)

2. (A⇒ B) =def (¬A ∨B)

3. (A⇔ B) =def ((A⇒ B) ∧ (B ⇒ A))

Usually the interpretation of a relation symbol R is a subset of the universe

R
X ⊆ U(X)α. But in the following we will consider relations as function symbols

because they will be interprated instead by their characteristic function χR:

χR
X(~a) =def

{
true

X
if ~a ∈ RX

false
X

else

1↑ In our paper we will consider only finite languages because we will use them to write
programs.

2↑ See [CL03] for a more classical approach.
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In particular, Gurevich’s proof requires the equality symbol =, interpreted
by the diagonal of the universe {(a, a) | a ∈ U(X)}, so we will assume it in the
following.

Definition 1.2. A term of a language is defined by induction:

1. if c has arity 0 then c is a term

2. if f has an arity α > 0 and t1, . . . , tα are terms, then ft1 . . . tα is a term

In particular, a formula F will be only a boolean term:

F =def true | false | Rt1 . . . tα | ¬F | (F1 ∧ F2)

where R is a relation symbol with arity α and t1, . . . , tα are terms. Indeed,
we will not use quantifiers in formulas, so we don’t need the notion of logical
variables. Instead, we will use the word “variables” for dynamical function
symbols with arity 0.

Definition 1.3. The interpretation t
X

of a term t is defined by induction on t:

1. If t = c has arity 0 then t
X

=def c
X

2. If t = ft1 . . . tα with α > 0 then t
X

=def f
X

(t1
X
, . . . , tα

X
)

The (unary) integers N are defined as usual. The constructors are ∅, inter-

preted by ∅
X

= 0, and S, defined only on unary integers by S
X

: x 7→ x + 1.
We can define the usual operations like +, × and so on... but we will not use
them in the following.

Notice that the terms obtained only with constructors has the form Sn∅
and are interpreted by Sn∅

X
= n. For each n ∈ N we say that Sn∅ is the

representation of n. We can define the size |n| of n by the number of symbols

used in its representation. For example, the size of +S4∅S3∅
X

is not 10 but 8

because +S4∅S3∅
X

= S7∅
X

.
In [?] we defined the usual types1 and we obtained their size in the same

way. But we don’t need such definition of the size for our main theorem, so in
the following we will only assume that we can construct a function |.| : X → N
giving the size of every element of the universe. This will allow us to define the
time complexity of a sequential algorithm.

1.2 Sequential Algorithms

Gurevich formalized in [Gur00b] the (sequential) algorithms as the objects
verifying three postulates : sequential time2, abstract states and bounded ex-
ploration. The first postulate formalizes the idea that a computation is made
step-by-step:

1↑ Booleans, integers using any base, lists, arrays, trees and graphs.
2↑ Gurevich studied real-time algorithms too in [GGV01].
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Postulate 1 (Sequential Time). A (sequential) algorithm is defined by:

1. a set of states S(A)

2. a set of initial states I(A) ⊆ S(A)

3. a transition function τA : S(A)→ S(A)

In particular two algorithms A and B will be the same (see [BDG09]) if they
have the same states, the same initial states and the same transition function.

An execution of the algorithm A is a sequence ~X = X0, X1, X2, . . . such
that X0 is an initial state and for all i ∈ N we have Xi+1 = τA(Xi).

At p.11 we will define an algorithmic equivalence between models of com-
putation using executions. Notice that two algorithms have the same set of
executions only if they have the same initial states and the same transition
function. So, we will not consider unreachable states in the following.

We didn’t define a set of terminal states because we can assume that an
execution ~X has stopped if there exists a state Xi such that τA(Xi) = Xi.
Indeed, after Xi no more changes happen. We will say that this state Xi is
final, and that an execution is terminal if it contains a final state. So, we can
define the time of an execution of A starting at the initial state X0:

time(A,X0) =def

{
min{i ∈ N | τ iA(X0) = τ i+1

A (X0)} if ~X is terminal
∞ else

The second postulate states that the states of an execution can be repre-
sented, and that these representations are up to isomorphisms:

Postulate 2 (Abstract States). For every algorithm A:

1. The states of A are (first-order) structures with the same language L(A)

2. S(A) and I(A) are closed by isomorphism

3. The transition function τA preserves the universes and commutes with the
isomorphisms

For the booleans and the integers we distinguished constructors like ∅ and
S from operations like + and ×. In fact, we will distinguish L(A) between:

1. Dyn(A): the dynamical symbols, whose interpretation can be changed
during an execution.

2. Stat(A): the static symbols, which have a fixed interpretation during an
execution.

They will also be distinguished between:

a. Init(A): the initial symbols, whose interpretation depends of the
initial state.
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b. The other symbols have a uniform interpretation in every state, and
they will also be distinguished between the constructors Cons(A)
and the operations Oper(A).

Because the symbols of Cons(A)tOper(A) have an interpretation which does
not depend of the considered structure, the size |X| of a structure will depend
only of the dynamical and initial symbols, which will be called the inputs1:

|X| =def max
f∈Dyn(A)tInit(A)

{|f |X}, where |f |X =def sup
ai∈U(A)

|fX(~a)|

Definition 1.4 (Time Complexity).
The algorithm A is C-time if there exists ϕA ∈ C such that for all X ∈ I(A):

time(A,X) ≤ ϕA(|X|)

Let AlgoC be the set of the C-time algorithms.

We assumed that the interpretation of a dynamical symbol f with arity α
can change during an execution. The update of f in (a1, . . . , aα) ∈ U(A)α with
the new value b ∈ U(A) will be denoted by (f, a1, . . . , aα, b). If X is a state
and u is an update, then X ⊕ u2 is a new structure with the same universe and
language such that:

f
X⊕u

(~a) =def

{
b if u = (f,~a, b)

f
X

(~a) else

If f
X

(~a) = b then the update (f,~a, b) will be called trivial because X ⊕
(f,~a, b) = X.

A set ∆ of updates from the same universe and language will be said con-
sistent if there is no updates (f,~a, b), (f,~a, b′) ∈ ∆ such that b 6= b′. If we try
to execute an inconsistent ∆ on X then the set of updates clashes:

f
X⊕∆

(~a) =def

{
b if (f,~a, b) ∈ ∆ and ∆ is consistent

f
X

(~a) else

Lemma 1.5 (Difference of structure). If X and Y are two structures with the
same universe and language, then there exists a consistent set ∆ of non-trivial
updates such that Y = X ⊕∆.

1↑ We could have defined |X| by
∑

f∈Dyn(A)tInit(A)

|f |X , but the two are equivalent:

max
f∈Dyn(A)tInit(A)

{|f |X} ≤
∑

f∈Dyn(A)tInit(A)

|f |X

≤ card(Dyn(A) t Init(A))× max
f∈Dyn(A)tInit(A)

{|f |X}

2↑ We denote the update by ⊕ and not by + as in [Gur00b] because the associativity
has no meaning and because we don’t have the commutativity: (X ⊕ (x, 0))⊕ (x, 1) 6= (X ⊕
(x, 1))⊕ (x, 0).
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Proof. ∆ = {(f,~a, b) | fY (~a) = b and f
X

(~a) 6= b}

This ∆ will be denoted by Y 	X, so we have X ⊕ (Y 	X) = Y . For every
state X ∈ S(A) we will denote by ∆(A,X) =def τA(X) 	 X the set of the
updates made by A on X.

We will say that two structures X and Y coincide over a set of terms T if

for all t ∈ T we have t
X

= t
Y

.
The third postulate states that only a finite number of terms determines the

evolution of the execution:

Postulate 3 (Bounded Exploration). There exists a finite set of terms T (A)
closed by subterms1 such that if two states X and Y coincide over T (A) then
∆(A,X) = ∆(A, Y ).

Gurevich proved in [Gur00b] that this axiomatic presentation of the set of
(sequential) algorithms Algo is equivalent to his operational presentation using
the Abstract State Machines (ASMs).

1.3 Abstract State Machines

Definition 1.6 (ASM Programs).

Π =def f(t1, . . . , tα) := t0
| if F then Π1 else Π2 endif

| par Π1‖ . . . ‖Πn endpar

Where f is a dynamical symbol of arity α, t0, t1, . . . , tα are terms, and F is
a formula.

Notation. For n = 0 a command par Π1‖ . . . ‖Πn endpar is an empty program.
If the else part of a if is empty we will simply write if F then Π endif.

Definition 1.7 (Operational Semantics of ASM).
An ASM program Π defines a transition function:

τΠ(X) =def X ⊕∆(Π, X)

where the set of updates ∆(Π, X) is defined by induction on Π:

∆(ft1 . . . tα := t0, X) =def {(f, t1
X
, . . . , tα

X
, t0

X
)}

∆(if F then Π1 else Π2 endif, X) =def ∆(Πi, X)
where i = 1 if F is true in X
and i = 2 if F is false in X

∆(par Π1‖ . . . ‖Πn endpar, X) =def ∆(Π1, X) ∪ · · · ∪∆(Πn, X)

1↑ T is closed by subterms if for all ft1 . . . tα ∈ T we have t1, . . . , tα ∈ T .
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The semantics of the par is a set of simultaneous updates, contrary to the
following imperative language where the updates are sequential.

We will use at p.34 the set of the terms read1 by Π:

Read(ft1 . . . tα := t0) =def {t1, . . . , tα, t0}
Read(if F then Π1 else Π2 endif) =def {F} ∪ Read(Π1) ∪ Read(Π2)

Read(par Π1‖ . . . ‖Πn endpar) =def Read(Π1) ∪ · · · ∪ Read(Πn)

Lemma 1.8. If X and Y coincide over Read(Π) then ∆(Π, X) = ∆(Π, Y ).

Proof. By induction on Π.

Remark. Notice that ∆(Π, X) may be inconsistent or contain updates trivial on
X. Inded, we have:

∆(τΠ, X) = τΠ(X)	X = (X ⊕∆(Π, X))	X ⊆ ∆(Π, X)

But it won’t be a problem, because the ASM programs used to prove Gure-
vich’s theorem are in normal form:

if F1 then Π1

else if F2 then Π2

...
else if Fc then Πc

endif . . . endif

Where for all state X one and only one Fi is true, and where every ASM
program Πi is formed only by parallel updates such that ∆(Π, X) is consistent
and contains no update trivial on X. In particular, for every ASM program Π
in normal form we have ∆(Π, X) = ∆(τΠ, X).

Theorem (Gurevich, 2000). Algo = ASM

Every ASM program is a sequential algorithm, which is an ASM program in
normal form. So, in the following we will assume that every ASM program is
in normal form.

1.4 Fairly Simulation

Example 1.9 (Temporary Variables). The following program containing a
loop:

{loop n {s}; }

is generally simulated by while with:

{i := 0; while i 6= n {s; i := i+ 1; }; }
1↑ The constructors true and false must be added to Read(Π), as explained in [Gur00b]

and [?].
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But this program uses a fresh variable i, so the language is not preserved,
even if in a way the implement the same behavior.

Another example1 is to simulate the exchange x↔ y between two variables
using a temporary variable:

v := x;x := y; y := v

So, the language L1 of the simulating program may be an extension of the
language L2 of the simulated program: L1 ⊇ L2. The language must remain
finite, so L1 \L2 must be finite, but this is not enough. Using a function symbol
of arity > 0 will be unfair because we will be able to store an unbounded amount
of information. So, in our definition of the simulation p.11 we will only assume
that L1 \ L2 is a finite set of variables (function symbols with arity 0) with a
uniform initialization2.

Definition 1.10 (Restriction of Structure).
Let X be a structure of language L1, and let L2 be a language such that

L1 ⊇ L2. The restriction of X to the language L2 will be denoted X|L2
and

is defined as a structure of language L2 such that:

1. U(X|L2
) = U(X)

2. For all f ∈ L2 we have f
X|L2 = f

X

Example 1.11 (Temporal Dilatation).
At each computation step of a Turing machine, several actions are done,

depending of the current state and of the symbol read in the current cell:

1. the state of the machine is updated

2. a new symbol may be written in the current cell

3. the head may move left or right

The notion of elementary action is very arbitrary. For example we may consider
that:

• either these actions are distinct, so three steps have been made

• or only multi-action has been done, so only one step of computation

Let M3 the Turing machine requiring three steps to make these actions, and
let M1 be the “classical” machine requiring only one step.

An execution ~X of M3 can correspond to an execution ~Y of M1 if for every
three steps of M3 the state is the same than M1:

1↑ We will use it again p.29.
2↑ A t

X0 where t is formed only of constructors and operations (including the size, see p.7)
and X0 is an initial state.
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M3 M1

X0 = Y0

X1

X2

X3 = Y1

X4

X5

X6 = Y2

X7

...
...

If M3 is implemented in a machine than is three times faster than the ma-
chine implementing M1, an external observer would not be able to notice a
difference: the time unit itself is arbitrary.

In this paper we will identify two executions ~X and ~Y if there exists a uniform
temporal dilatation d > 0 for every execution such that for all step i ∈ N we
have Xd×i = Yi. That means that d steps of ~X are required to simulate one

step of ~Y , and we will say that the simulation is step-by-step. Unfortunately,
contrary to the previous example where all the machines can be simulated with
a temporal dilatation d = 3, in our paper the temporal dilatation will depend
of the simulated program.

Remark. The constraint of the temporal dilatation is not enough to ensure that
the terminating behavior is the same. Indeed, even if Yi is a terminal state
for the simulated machine M1, the states between X3×i and X3×i+(d−1) may
alternate, so M3 may not be terminal:

M3 M1

X0 = Y0

...
...

X3×i+0 = Yi
X3×i+1

X3×i+2

X3×i+0 = Yi
...

...

So, an ending time e ≥ 0 must be added to our definition of the fairly
simulation, such that time(P1, X) = d× time(P2, X) + e, where e only depends
of the simulated program:

Definition 1.12 (Fairly Simulation).
Let M1 and M2 be two models of computation1. We will say that M1

simulates M2 if for all program P2 of M2 there exists a program P1 of M1 such
that:

1↑ Formally, we can define a model of computation as a set of programs associated with
an operational semantics. See p.12 for LoopC and p.8 for the ASM.
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1. L(P1) ⊇ L(P2), and L(P1) \ L(P2) is a bounded set of variables

and if there exists d > 0 and e ≥ 0 depending only of P2 such that for every
execution ~Y of P2 there exists an execution ~X of P1 such that:

2. for all i ∈ N we have Xd×i|L(P2) = Yi

3. time(P1, X0) = d× time(P2, Y0) + e

If M1 simulates M2 and M2 simulates M1 then thses two models of com-
putation will be said algorithmically equivalent, which will be denoted by
M1 'M2.

Remark. Applying the second condition with i = 0 requires that the initial
states must be the same, up to temporary variables.

According to the third condition, if the simulated execution requires n steps,
then the simulating will require O(n) steps, so our fairly simulation preserves
the class of the time complexity defined p.7.

1.5 Imperative Language

We recall the usual commands allowed in paradigm of imperative language. We
then give a operational semantics within the form of Krivine machines ([Kri07]).

Definition 1.13 (LoopC Programs).

c =def f(t1, . . . , tα) := t0
| if F {P1} else {P2}
| loop n except F {P}

P =def end

| c;P

where f has arity α, t0, t1, . . . , tα are terms, F is a formula, and n is a variable.

Notation. Similarly to the ASM programs, we will write only if F {P} for the
command if F {P} else {end}. Following Meyer and Ritchie’s style [MR67],
we will note simply loop n {P} a command loop n except false {P}. For
readability reasons, we will omit the ; end inside curly brackets in the examples.

The composition of commands c;P can be extended to composition of
programs P1;P2 by end;P2 =def P2 and (c;P1);P2 =def c; (P1;P2). This
allows us to define the operational semantics of our imperative programs. The
transistion relation is denoted by � and X denotes an environment (a mapping
from variables to values). The ⊕ symbol is defined by (E ⊕ (u, e))(x) = if x =
u then e else E(x).
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Definition 1.14 (Operational Semantics of LoopC).

ft1 . . . tk := t0;P ? X � P ? X ⊕ (f, t1
X
, . . . , tk

X
, t0

X
)

if F {P1} else {P2};P3 ? X � P1;P3 ? X
if F is true in X

if F {P1} else {P2};P3 ? X � P2;P3 ? X
if F is false in X

loop n except F {P1};P2 ? X � P1; loop n except F {P1};P2 ? X ⊕ (i, i
X

+ 1)
if i < n and F is false in X

loop n except F {P1};P2 ? X � P2 ? X ⊕ (i, 0)
if i = n or F is true in X

where i is a dynamical symbol initialized to 0 in the initial states and which
does not appear in the program1. Each loop has a different counter i.

Remark. The transition system is deterministic and we denote �∗ the transi-
tive closure of �. t transition steps will be denoted by �t.

end ? X are the only states with no following. We say that P terminates
on X (denoted by P ↓ X) if there exists t and X ′ such that P ?X �t end ?X ′.
A program will be said terminal if it terminates on all its states. t and X ′ are
unique if P terminates on X (respectively denoted by time(P,X) and P (X)).

If t ≤ time(P,X)2 then there exists a unique couple P ′ and X ′ such that:
P ? X �t P ′ ? X ′. They are denoted by τ tX(P ) and τ tP (X).

In particular, if P ↓ X and t = time(P,X) then τ tX(P ) = end and τ tP (X) =
P (X).

Remark. τ tP is not a transition function in the sense of the first postulate p.6
because τ tP (X) 6= τ1

P ◦ · · · ◦ τ1
P (X).

The sequence of the updates made by P on X is τ1
P (X) 	 τ0

P (X), τ2
P (X) 	

τ1
P (X), . . . where every τ t+1

P (X) 	 τ tP (X) is empty or is a singleton. We can
define the set of the updates made by P on X, ∆(P,X):

Definition 1.15 (Updates of an Imperative Program).

∆(P,X) =def

⋃
0≤t≤time(P,X)

τ t+1
P (X)	 τ tP (X)

Remark. If P ↓ X then ∆(P,X) is finite.

In the following we will say that P is without overwrite on X if ∆(P,X)
is consistent.

Indeed, for all imperative program there is an overwrite if a variable is up-
dated more than twice in the sequence of steps. In our framework, that means

1↑ The for loop where i is read can be simulated by j := 0; loop n except F {P1[j]; j :=
j + 1};P2.

2↑ If P does not terminate on X we can assume that time(P,X) =∞.
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that there exists in ∆(P,X) two updates (f,~a, b) and (f,~a, b′) with b 6= b′, which
is the definition p.?? that ∆(P,X) is inconsistent.

Lemma 1.16 (Updates without overwrite).
If P ↓ X without overwrite then ∆(P,X) = P (X)	X.

Proof. See [Mar14] or [?].

Moreover we can prove that the composition of programs behaves as intended
for the output and the execution time:

Proposition 1.17 (Composition of Programs).
P1;P2 ↓ X if and only if P1 ↓ X and P2 ↓ P1(X), such that:

1. P1;P2(X) = P2(P1(X))

2. time(P1;P2, X) = time(P1, X) + time(P2, P1(X))

Proof. The proof is straightforward and is based on the determinism and tran-
sitivity of the transition rules.

Notation. For sake of readability of imperative programs we will use the off-
side rule (no more semicolons, nor curly brackets, ...).

loop n
n := n+ 1

Figure 1: A non-terminal program

According to the operational semantics 1.14 p.12, the program in the figure 1
p.14 is not terminal. This program is not forbidden by the syntactical definition
1.13 p.12. As we are interested in programs running in polynomal time, we need
to restrict the language, at least, to eliminate non terminating programs. Let
LoopCbound be the set of the LoopC programs verifying this condition :

(bound) : for all loop n {Q} ∈ P, n ∈ Stat(Q)

This restriction is strongest than the restriction ”loop variables can not be
updated inside their scope”.

Corollary 1.18 (Termination).
Every program of LoopCbound is terminal.

Proof. By induction, using the proposition 1.17 p.14.
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r := 0
r := r + 1
loop n

x := r
loop x

r := r + 1

Figure 2: A program for the exponential

1.6 Polynomial Time

The program Ppow in the figure 2 p.15 is in LoopCbound (see the condition p.14).
It uses only variables, zero and successor (no more conditionals, nor condi-
tional loop exit), so it is a usual Loop program [MR67] with time(Ppow , X) ≥
max{nPpow (X) | n ∈ Dyn(Ppow )}.

The block x := r; loop x {r := r + 1} computes r := 2r, so rPpow (X) = 2n
X

,
and the program is (at least) exponential in time (and space).

To forbid this kind of programs, Neergaard [Nee03] used the Bellantoni and
Cook’s approach [BC92] separating safe and normal variables. The safe
variables can be updated, and the normal variables are the bounds n in the
loop n commands:

Definition 1.19 (Bounds of Loops).

Bound(ft1 . . . tk := t0) =def {}
Bound(if F {P1} else {P2}) =def Bound(P1) ∪ Bound(P2)

Bound(loop n except F {P}) =def {n} ∪ Bound(P )

Bound(end) =def {}
Bound(c;P ) =def Bound(c) ∪ Bound(P )

Remark. Bound(P1;P2) = Bound(P1) ∪ Bound(P2)

Neergaard added the following condition to obtain the language Ploop, which
will be denoted in this paper by LoopCneer :

(neer) : for all loop n {Q} ∈ P, ({n} ∪ Bound(Q)) ⊆ Stat(Q)

Of course neer ⇒ bound and so LoopCneer ⊆ LoopCbound . In particular,
according to the corollary 1.18 p.14, the programs are terminal. Moreover,
as suggested by the name Ploop, Neergaard proved that computation are in
polynomial time (and space) even if they use lists as data structures, since
|(d, e)| = max(|d|, |e|) + 1.

This result can be extended to translation functions (in the geometric
sense), those verifying that:

|f(~x)| ≤ max|~x|+ cf
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Theorem 1.20 (LoopCneer is polytime).
If the static symbols are translations, then LoopCneer is Pol -time and Pol -

space1.

Proof. Generalization of the proof in [Nee03].

As our goal is to find imperative polytime programming languages that com-
pute all algorithms, we need to enlarge the set of data structures to be closed
to ”natural” programming (higher is the level of abstraction useful it is). The
set of translation functions is very restrictive, for example the program 3 p.16
respects Neergaard’s condition but is not polytime because x 7→ 2x is not a
translation.

r := 1
loop n
r := 2× r
loop r

Figure 3: A non-polytime program verifying Neergaard’s condition

In particular, according to our framework [?] for unary integers the successor
is a translation but not the addition, and for the binary integers the addition is
a translation but not the multiplication.

The program in the figure 3 p.16 illustrates that an exponential space in r
can be converted into an exponential time using loop r and the composition.
That’s why the space must be polytime too in the theorem 1.20 p.16.

The idea to get a polytime language without constraint on the data struc-
tures is to disconnect the link between space and time. The bounds must not
be updated in the whole program:

(stat) : Bound(P ) ⊆ Stat(P )

Then stat ⇒ neer and so LoopCstat ⊆ LoopCneer . In particular, according to
the corollary 1.18 p.14, programs are terminal.

Remark. Sadly, this language is not closed by composition. For example n :=
pow(n) and loop n are in LoopCstat , but not n := pow(n); loop n.

But LoopCstat will be useful anyway. We will prove 1.22 p.17) that programs
in LoopCstat are polytime, where the degree of the complexity is the depth of
the program (proposition 1.22 p.17):

1↑ A program P is C-space if there exists ϕP ∈ C such that for all initial state X we have
|P (X)| ≤ ϕP (|X|).
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Definition 1.21 (Depth of a Program).

depth(ft1 . . . tk := t0) =def 0
depth(if F {P1} else {P2}) =def max(depth(P1), depth(P2))

depth(loop n except F {P1}) =def

{
1 + depth(P1) if n ∈ Dyn(P ) t Init(P )

depth(P1) if n ∈ Cons(P ) tOper(P )

depth(end) =def 0
depth(c;P ) =def max(depth(c), depth(P ))

Remark. depth(P1;P2) = max(depth(P1), depth(P2))

The two cases in the previous definition may be surprising, because the depth
is distinguished from the nesting. Indeed, if the bound of a loop is an uniform
symbol, we assume that the loop is not a “true” loop, but only a syntactical
convention to avoid code duplication, as illustrated fig. 4 p.17.

r := 0 r := 0
loop 3 r := r + 1

r := r + 1 r := r + 1
r := r + 1

Figure 4: Different nesting, same depth.

Remind that for all programs P in LoopCstat , Bound(P ) ⊆ Stat(P ). So
we will use for the depth only the symbols in Init(P ). Moreover, if P1 is a
subprogram of P then Init(P1) ⊆ Init(P ). So, in the following proposition and
its proof for simplicity we will use the notation Init for the set of the initial
symbols of the program and its subprograms, and |X|Init for the size of these
symbols in X.

Proposition 1.22 (Polynomial Time).
For all P ∈ LoopCstat there exists ϕP ∈ Pol such that for all X:

1. time(P,X) ≤ ϕP (|X|Init)

2. deg(ϕP ) = depth(P )

Remark. The initial symbols are statics, so their interpretation in P (X) is the
same as in X. In particular for all program P : |P (X)|Init = |X|Init

Proof. By induction on P .

P = end
ϕP = 0 is suitable:

1. time(end, X) = 0 so time(P,X) ≤ 0

2. deg(0) = 0 = depth(end)
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P = P1;P2

By induction we assume that the proposition is true for P1 and P2.

We prove it for P = P1;P2 with ϕP1;P2
= ϕP1

+ ϕP2
.

According to the proposition 1.17 p.14:

1. time(P1;P2, X) = time(P1, X) + time(P2, P1(X)), so:

time(P1;P2, X) ≤ ϕP1(|X|Init) + ϕP2(|P1(X)|Init)
= ϕP1

(|X|Init) + ϕP2
(|X|Init)

2.
deg(ϕP1;P2

) = deg(ϕP1
+ ϕP2

)
= max(deg(ϕP1

), deg(ϕP2
))

= max(depth(P1), depth(P2))
= depth(P1;P2)

It remains to prove the proposition for the commands alone, using the in-
duction hypothesis:

P = ft1 . . . tk := t0
ϕP = 1 is suitable:

1. time(ft1 . . . tk := t0, X) = 1 so time(P,X) ≤ 1

2. deg(1) = 0 = depth(ft1 . . . tk := t0)

P = if F then {P1} else {P2}
We prove that ϕP = 1 + ϕP1 + ϕP2 is suitable:

P ? X � Pi ? X

where i = 1 if F is true in X and i = 2 if F is false in X.

1. time(P,X) = 1 + time(Pi, X) ≤ 1 + time(P1, X) + time(P2, X)

But time(P1, X) ≤ ϕP1(|X|Init) and time(P2, X) ≤ ϕP2(|X|Init)

So time(P,X) ≤ 1 + ϕP1
(|X|Init) + ϕP2

(|X|Init)

2.
deg(ϕP ) = deg(1 + ϕP1

+ ϕP2
)

= max(deg(ϕP1), deg(ϕP2))
= max(depth(P1), depth(P2))
= depth(P )

P = loop n except F {P1}
By simplicity, we assumed p.13 that the counters are not read in the
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program. So we can write the execution like this:

loop n except F {P1} ? X ⊕ (i, 0)
� P1; loop n except F {P1} ? X ⊕ (i, 1)
�time(P1,X) loop n except F {P1} ? P1(X)⊕ (i, 1)
� P1; loop n except F {P1} ? P1(X)⊕ (i, 2)
...
�time(P1,P

a−1
1 (X)) loop n except F {P1} ? P a1 (X)⊕ (i, a)

� {} ? P a1 (X)⊕ (i, 0)

where a is the first i ≤ nX such that F is true in P a1 (X), and else a = nX .

1. So we have:

time(P,X) =
∑

0≤i≤a−1

(1 + time(P1, P
t
1(X))) + 1

≤ 1 + nX +
∑

0≤i≤nX−1

time(P1, P
t
1(X))

But by induction hypothesis for all X: time(P1, X) ≤ ϕP1
(|X|Init)

So time(P1, P
t
1(X)) ≤ ϕP1(|P t1(X)|Init) = ϕP1(|X|Init), and we have:

time(P,X) ≤ 1 + nX +
∑

0≤i≤nX−1

ϕP1(|X|Init)

= 1 + nX × (1 + ϕP1
(|X|Init)) (1)

≤ 1 + (nX + 1)× (1 + ϕP1
(|X|Init)) (2)

We use these two inequalities for the following cases:

n ∈ Cons(P ) tOper(P )
In this case there exists a constant cn ∈ N1 such that nX = cn
So ϕP (~x) = 1 + cn × (1 + ϕP1

(~x)) (1) is suitable.

n ∈ Init(P )
Because |nX | = nX + 1 we have nX + 1 ∈ |X|Init .
We assume that this is the j-th of the k elements.
So ϕP (~x) = 1 + xj × (1 + ϕP1

(~x)) (2) is suitable.

2. The degree depends of the case:

n ∈ Cons(P ) tOper(P )

deg(ϕP ) = deg(1 + cn × (1 + ϕP1))
= deg(ϕP1

)
= depth(P1)
= depth(P )

n ∈ Init(P )

deg(ϕP ) = deg(1 + πkj × (1 + ϕP1))
= 1 + deg(ϕP1

)
= 1 + depth(P1)
= depth(P )
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Remark. Because time(P,X) ≤ ϕP (|X|Init(P )), using the projections we have
time(P,X) ≤ ϕ̃P (|X|), where ϕ̃P is polynomial of degree depth(P ).

2 Simulation of LoopC with ASM

2.1 Graphs of Execution

The simplest idea to translate an imperative program into an ASM is to procreed
command by command , adding a line counter 1 to move from one command to
another while respecting the operational semantics p.12.

Example 2.1. The following program Pmin :

0 : r := 0
1 : loop n except r = m
2 : r := r + 1

can be translated , see the figure 5 p.20.

par

if line = 0 then

par r := 0 ‖ line := 1 endpar

endif

‖
if line = 1 then

if (i 6= n ∧ r 6= m) then
par i := i+ 1 ‖ line := 2 endpar

else

par i := 0 ‖ line := 3 endpar

endif

endif

‖
if line = 2 then

par r := r + 1 ‖ line := 1 endpar

endif

endpar

Figure 5: Translation of Pmin

We develop an other approach related to graphs where nodes are programs
and edges are one step execution.

1↑ such ASM programs are called “Control State ASMs” in [Bör05].
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Definition 2.2 (Length of an imperative program).

length(end) =def 0
length(c;P ) =def length(c) + length(P )

length(ft1 . . . tk := t0) =def 1
length(if F {P1} else {P2}) =def 1 + length(P1) + length(P2)

length(loop n except F {P}) =def 1 + length(P )

Remark. The number of a line is the length of the program before the cur-
rent command, so the line numbers are between 0 and length(P ). Because the
number of values is bounded, instead of an instruction counter whose value will
change a finite number of booleans b0, b1, . . . blength(P ) can be used.

This approach was suggested in [GV12], and is suitable for a programming
language based on line numbers (for example using goto commands) but not
for a structured programming language such as LoopC. Indeed, the line number
can distinguish commands which are identical for the operational semantics:

Example 2.3. We distinguish at the figure 6 p.21 the commands x := x+ 1

and x := x+ 1 by an external marking.

P1 � P2 � P3 � P4

loop m x := x+ 1 loop n x := x+ 1

x := x+ 1 loop n x := x+ 1 loop n

loop n x := x+ 1 loop m x := x+ 1

x := x+ 1 loop m x := x+ 1 loop m

x := x+ 1 loop n x := x+ 1

loop n x := x+ 1 loop n

x := x+ 1 x := x+ 1

Figure 6: Loops with marking

From an operational point of view these commands are identical: we could
have replaced P2 by P4 without changing the following of the execution. The
same remark can be applied to conditionals, as showed at the figure 7 p.22.

Thus, a translation based on the line numbers could be defined, but to be
distinguished the commands should be marked by their depth (for nested loops)
and the path of the conditionals reached during the execution. In addition to
being tedious, this approach would be useless because these commands would
identical anyway, from an operational point of view.

So, we will not use the booleans {bi | 0 ≤ i ≤ length(P )} indexed by the
line numbers, but instead we will index them by all the programs which can be
reached during the execution:
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P1 � P2 � P3

if true y := 0 x := x+ 1

y := 0 x := x+ 1

x := x+ 1

else

y := 1

x := x+ 1

P1 � P2 � P3

if false y := 1 x := x+ 1

y := 0 x := x+ 1

x := x+ 1

else

y := 1

x := x+ 1

Figure 7: Conditionals with marking

Example 2.4. (Graph of execution for Pmin)1

The possible executions of a program may be represented by a graph where
the edges are the possible transitions, and the vertices are possible programs:

r := 0
loop n except r = m

r := r + 1

loop n except r = m
r := r + 1

r := r + 1
loop n except r = m

r := r + 1

end

In the following we will only need the set of vertices to index the booleans,
so the graph of execution for Pmin will be denoted by:

G(Pmin) = { r := 0; loop n except r = m {r := r + 1; }; end,
loop n except r = m {r := r + 1; }; end,
r := r + 1; loop n except r = m {r := r + 1; }; end,
end

}

Notation. To define formally the graphs of execution, we need to introduce the
notation G(P1);P2. If G is a set of imperative programs and P is an imperative
program, then:

G;P =def {Pj ;P | Pj ∈ G}
1↑ Introduced before as example for the operational semantics ?
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Remark. According to the definition of G;P :

1. card(G;P ) = card(G)

2. (G1;P ) ∪ (G2;P ) = (G1 ∪ G2);P

3. G1 ⊆ G2 ⇒ G1;P ⊆ G2;P

Definition 2.5 (Graphs of execution).

G(end) =def {end}
G(c;P ) =def G(c);P ∪ G(P )

G(t1 . . . tk := t0) =def {t1 . . . tk := t0; end}
G(if F {P1} else {P2}) =def {if F {P1} else {P2}; end} ∪ G(P1) ∪ G(P2)
G(loop n except F {P}) =def G(P ); loop n except F {P}; end

Remark. end and P ∈ G(P )

As intended, the number of possible programs occurring in an execution is
bounded:

Lemma 2.6 (Finiteness of a graph of execution).

card(G(P )) ≤ length(P ) + 1

Proof. The proof is made in [?] by induction.

So we will need only a bounded number of booleans to save the current states
of the program during the execution.

Remark. For programs like Pmin in the example 18 p.22, card(G(P )) = length(P )+
1 can effectively be reached. But the marked programs p.21 show that the in-
equality sign cannot be replaced by an equality sign. So this bound is optimal.

So we will use the set of booleans {bPj | Pj ∈ G(P )} to memorize the states
of the program at each step of the execution. But in our translation from P
into ΠP we need to prove [prop. p.23]: if Pj ∈ G(P ) then the next step program
is in G(P ). We use the two following technical lemmas (proof are by induction
on P1 (resp. P )):

Lemma 2.7 (Composition of graphs of execution). G(P1;P2) = G(P1);P2 ∪
G(P2).

Lemma 2.8 (Subgraphs of execution). If Q ∈ G(P ) then G(Q) ⊆ G(P ).

We can now prove that if a program appears in G(P ) then its potential
successors for the operational semantics p.12 appear in G(P ) too:

Proposition 2.9 (Operational closure of the graphs of execution).

1. If t1 . . . tk := t0;Q ∈ G(P ) then Q ∈ G(P )
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2. If if F {P1} else {P2};Q ∈ G(P ) then P1;Q and P2;Q ∈ G(P )

3. If loop n except F {P1};Q ∈ G(P ) then P1; loop n except F {P1};Q
and Q ∈ G(P )

Proof. The proof is made by case:

t1 . . . tk := t0;Q ∈ G(P )
{t1 . . . tk := t0;Q} ∪ G(Q) = G(t1 . . . tk := t0;Q) ⊆ G(P ) according to the
lemma 2.8. But Q ∈ G(Q) and so Q ∈ G(P ).

if F {P1} else {P2};Q ∈ G(P )
{if F {P1} else {P2};Q} ∪ G(P1);Q ∪ G(P2);Q ∪ G(Q)

= G(if F {P1} else {P2};Q) ⊆ G(P ) according to the lemma 2.8. But
P1;Q ∈ G(P1);Q and P2;Q ∈ G(P2);Q and so P1;Q and P2;Q ∈ G(P ).

loop n except F {P1};Q ∈ G(P )
G(P1); loop n except F {P1};Q ∪ G(Q) = G(loop n except F {P1};Q)
⊆ G(P ) according to the lemma 2.8. But P1; loop n except F {P1};Q ∈
G(P1); loop n except F {P1};Q and Q ∈ G(Q).

So P1; loop n except F {P1};Q and Q ∈ G(P )

2.2 Translation of an Imperative Program

Notation. According to the previous subsection, we will use the set of fresh
variables {bPj | Pj ∈ G(P )}. Only one of the bPj ’s will be true at each step of
the run, so in the following we will note X[bPj

] the only bPj
that is true where

X is a L(P )-structure. In particular we have X[bPj
]|L(P ) = X.

To change the current state of the execution from Pj to Pk we only have to
use the set of updates {(bPj

, false ), (bPk
, true )}. This set is consistent only if

there is no program P such that one successor of P can be P itself1.
It’s only the case when P = loop n except F {end};Q if i < n and F is

false (see 1.14 p.12).
So, if the body ??(?) of the loop is empty, instead of doing inconsistant

updates we will simply don’t change the state. But because the state is not
changed we must verify that the ASM program do not stop . Fortunately, the
loop counter i will be updated, so the execution can continue.

The proposition 2.9 ensures that the following translation is well defined:

Definition 2.10 (Translation of an Imperative Program).

ΠP =def parPj∈G(P ) if bPj
then P trj endpar

where P trj is defined at the figure 8 p.25.

1↑ τ1
X(P ) = P ... notation introduced before ? To define ∆(P,X) ? P (X)	X enough ? I

think so, if some proofs are admitted...
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(end)tr =def par endpar

(ft1 . . . tk := t0;Q)tr =def par

bft1...tk:=t0;Q := false
‖ ft1 . . . tk := t0
‖ bQ := true
endpar

(if F then {P1} else {P2};Q)tr =def par

bif F then {P1} else {P2};Q := false
‖ if F then

bP1;Q := true
else

bP2;Q := true
endif

endpar

(loop n except F {end};Q)tr =def if (i 6= n ∧ ¬F ) then
i := i+ 1

else

par

bloop n except F {end};Q := false
‖ i := 0
‖ bQ := true
endpar

endif

(loop n except F {c;P1};Q)tr =def par

bloop n except F {c;P1};Q := false
‖ if (i 6= n ∧ ¬F ) then

par

i := i+ 1
‖ bc;P1;loop n except F {c;P1};Q := true
endpar

else

par

i := 0
‖ bQ := true
endpar

endif

endpar

Figure 8: Translation of an Imperative Program
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Example 2.11. Remind that the graph of execution for Pmin obtained p.22 is:

G(Pmin) = { r := 0; loop n except r = m {r := r + 1; }; end,
loop n except r = m {r := r + 1; }; end,
r := r + 1; loop n except r = m {r := r + 1; }; end,
end

}

So, the translation ΠPmin
of this imperative program into an ASM program is

obtained fig.9 p.271.

Proposition 2.12 (Step by Step Simulation).
For all 0 ≤ t < time(P,X): τΠP

(τ tP (X)[bτt
X(P )]) = τ t+1

P (X)[bτt+1
X (P )]

2

Proof. As t < time(P,X) so τ tX(P ) 6= end. The proof is made by case on τ tX(P )
(see Appendice p.??.

2.3 The Simulation

Theorem 2.13. ASM simulates LoopC.

Proof. Remind that our simulation p.113 requires three conditions:

1. L(ΠP ) = L(P ) ∪ {bPj
| Pj ∈ G(P )}

where card({bPj
| Pj ∈ G(P )}) ≤ length(P ) + 1, according to the lemma

2.6.

So, in the worst case, we use at most length(P ) + 1 temporary variables.

2. We prove by induction on 0 ≤ t ≤ time(P,X) that:

τ tΠP
(X[bP ]) = τ tP (X)[bτt

X(P )]

i = 0
τ0
ΠP

(X[bP ]) = X[bP ] = τ0
P (X)[bτ0

X(P )]

i⇒ i+ 1
τ t+1
ΠP

(X[bP ])

= τΠP
(τ tΠP

(X[bP ]))

= τΠP
(τ tP (X)[bτt

X(P )]) according to the induction hypothesis

= τ t+1
P (X)[bτt+1

X (P )] according to the proposition 2.12

with 0 ≤ t < t+ 1 ≤ time(P,X)

So we have for all t ∈ N:

τ tΠP
(X[bP ])|L(P ) = τ tP (X)[bτt

X(P )]|L(P ) = τ tP (X)

Thus, the temporal dilatation is d = 1

1↑ We could remove the last conditional, but we prefer a homogeneous presentation.
2↑ Introduction of τ tX(P ) and τ tP (X) !
3↑ Introduction at the section Framework...
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par

if br:=0;loop n except r=m {r:=r+1;};end then

par

br:=0;loop n except r=m {r:=r+1;};end := false
‖ r := 0
‖ bloop n except r=m {r:=r+1;};end := true
endpar

endif

‖ if bloop n except r=m {r:=r+1;};end then

par

bloop n except r=m {r:=r+1;};end := false
‖ if (i 6= n ∧ r 6= m) then

par

i := i+ 1
‖ br:=r+1;loop n except r=m {r:=r+1;};end := true
endpar

else

par

i := 0
‖ bend := true
endpar

endif

endpar

endif

‖ if br:=r+1;loop n except r=m {r:=r+1;};end then

par

br:=r+1;loop n except r=m {r:=r+1;};end := false
‖ r := r + 1
‖ bloop n except r=m {r:=r+1;};end := true
endpar

endif

‖ if bend then

par

endpar

endif

endpar

Figure 9: Translation of Pmin into an ASM program
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3. We prove by inequalities that time(ΠP , X[bP ]) = time(P,X):

time(ΠP , X[bP ]) ≤ time(P,X)
If t = time(P,X) then τ tX(P ) = end, so:

∆(ΠP , τ
t
P (X)[bτt

X(P )])

= ∆(endtr, τ tP (X)[bτt
X(P )])

= ∆(par endpar, τ tP (X)[bτt
X(P )])

= ∅
So we have:

τ t+1
ΠP

(X[bP ])

= τΠP
(τ tΠP

(X[bP ]))

= τΠP
(τ tP (X)[bτt

X(P )])

= τ tP (X)[bτt
X(P )] + ∆(ΠP , τ

t
P (X)[bτt

X(P )])

= τ tP (X)[bτt
X(P )]

= τ tΠP
(X[bP ])

Thus, we have time(ΠP , X[bP ]) ≤ time(P,X).

time(ΠP , X[bP ]) ≥ time(P,X)
The proof is made by case for all 0 ≤ t < time(P,X):

τ t+1
X (P ) 6= τ t

X(P )
In that case τ t+1

P (X)[bτt+1
X (P )] 6= τ tP (X)[bτt

X(P )].

So τ t+1
ΠP

(X[bP ]) 6= τ tΠP
(X[bP ]).

τ t+1
X (P ) = τ t

X(P )
According to the transition system 1.14 p.12 it is only possible
in the case

P = loop n except F {end};Q

if i < n and F is false.

But in that case τ t+1
P (X) = τ tP (X)⊕ (i, i

τt
P (X)

+ 1)
So τ t+1

P (X)[bτt+1
X (P )] 6= τ tP (X)[bτt

X(P )].

Thus τ t+1
ΠP

(X[bP ]) 6= τ tΠP
(X[bP ]).

In any case, we have τ t+1
ΠP

(X[bP ]) 6= τ tΠP
(X[bP ]).

So time(ΠP , X[bP ]) ≥ time(P,X).

So we have time(ΠP , X[bP ]) = time(P,X), thus e = 0

3 Simulation of ASMPol with LoopCstat

We prove the simulation in three steps:

1. Translate Π into an imperative program Pstep simulating one step of the
ASM.

28



2. Repeat Pstep enough time, depending of cΠ the complexity of Π.

3. Ensure that the final program stops at the the same time than the ASM,
up to temporal dilatation.

3.1 Translation of one Step

Because ASM and Imp have the same updates and conditionals, an intuitive
translation could be:

(ft1 . . . tk := t0)tr =def ft1 . . . tk := t0; end
(if F then Π1 else Π2 endif)tr =def if F then {Πtr

1 } else {Πtr
2 }; end

(par Π1‖ . . . ‖Πn endpar)tr =def Πtr
1 ; . . . ; Πtr

n

But remember that the updates are parallel and not sequential in the ASM.

Example 3.1. The ASM program Π:

par x := y‖y := x endpar

exchanges the value of x and y, but its translation Πtr:

x := y; y := x; end

replaces the value of x by the value of y.

To capture the simultaneous behavior of the ASM, we need to substitute the
terms read in Π by fresh temporary variables:

Definition 3.2 (Substitution of a term by a variable).

(ft1 . . . tk := t0)[v/t] =def ft1[v/t] . . . tk[v/t] := t0[v/t]
(if F then Π1 else Π2 endif)[v/t] =def if F [v/t] then Π1[v/t]

else Π2[v/t] endif
(par Π1‖ . . . ‖Πn endpar)[v/t] =def par Π1[v/t]‖ . . . ‖Πn[v/t] endpar

where t1[v/t2] =def

{
v if t1 = t2
t1 else

Remark. Because the temporary variables are fresh, if t1 and t2 are distinct
terms then Π[vt1/t1][vt2/t2] = Π[vt2/t2][vt1/t1]. In particular, for the set of
terms ~t of Read(Π) (see p.9), the notation Π[~vt/~t] is not ambiguous.

But using Π[~vt/~t]
tr for Pstep is not sufficient, because it remains two prob-

lems:

1. The variables vt1 , . . . , vtr must be initialized with the values of the terms
{t1, . . . , tr} = Read(Π). So the program ~vt := ~t must be computed before
Π[~vt/~t]

tr.
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2. According to the definition 1.12 p.11 the temporal dilatation is uniform,
so Pstep should compute the same number of steps for all possible initial
states. To dot that we pad [FZG10] the program using skip n commands,
defined by:

skip 0 =def end

skip n+ 1 =def if true {}; skip n

We can assume1 that Π is in normal form, so its translation has the form:

if F1 then {Πtr
1 };

else if F2 then {Πtr
2 };

...
else if Fc then {Πtr

c };
end

Because Π is in normal form, for all X only one Fi is true. So exactly
i steps are done to enter in the block {Πtr

i }. Then mi updates are are
done in the block, and the program stops. The number of steps done is
i + mi ≤ c + m, where m = max{mi | 1 ≤ i ≤ c}. So, it is sufficient to
add skip (c + m) − (i + mi) at the end of each block {Πtr

i } to compute
them in c+m steps for each possible state X.

We obtain at the figure 10 p.31 the program Pstep which simulates one step
of the ASM program Π in a constant number of steps:

Proposition 3.3 (Translation2 of one step of an ASM).

1. (Pstep(X)	X)|L(Π) = ∆(Π, X|L(Π))

2. time(Pstep , X) = r + c+m = tΠ

where:

• r is the number of terms read by Π (see p.??)

• c is the number of states recognized by Π (voir p.??)

• m is the parallelism value of Π (voir p.??)

Proof. The initialization requires r steps.
For each variable vt and for each state Y after the initialization we have:

vt
Y = t

X

In particular for each conditional Fi: vFi

Y = Fi
X

Because Π is in normal form, exactly one Fi is true in X, let Fj be this
formula.

1↑ ref!
2↑ Restriction of structures, r and c
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Π = Pstep =
vt1 := t1 ;
vt2 := t2 ;
...
vtr := tr ;

if F1 then if vF1
then

par {
f1

1 (~t11) := t11 f1
1 (~vt11) := vt11 ;

f1
2 (~t12) := t12 f1

2 (~vt12) := vt12 ;
...

...

f1
m1

(~t1m1
) := t1m1

f1
m1

(~vt1m1
) := vt1m1

;

skip (c+m)− (1 +m1) ;
endpar }

else else {
if F2 then if vF2

then

par {
f2

1 (~t21) := t21 f2
1 (~vt21) := vt21 ;

f2
2 (~t22) := t22 f2

2 (~vt22) := vt22 ;
...

...

f2
m2

(~t2m2
) := t2m2

f2
m2

(~vt2m2
) := vt2m2

;

skip (c+m)− (2 +m2) ;
endpar }

...
...

else else {
if Fc then if vFc

then

par {
f c1(~tc1) := tc1 f c1(~vtc1) := vtc1 ;

f c2(~tc2) := tc2 f c2(~vtc2) := vtc2 ;
...

...

f cmc
(~tcmc

) := tcmc
f cmc

(~vtcmc
) := vtcmc

;

skip (c+m)− (c+mc) ;
endpar }

endif . . . endif ; } . . . ; } ; end

Figure 10: Translation Pstep of the ASM program Π
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The computation requires j steps to reach the block of Fj , then mj steps
for the updates. Then, because of the command skip (c + m) − (j + mj), we
obtain an execution time depending only of Π:

time(Pstep , X) = r + (j +mj) + (c+m)− (j +mj) = r + c+m

After the initialization of the variables, the updates done in the block are
∆(Π, X|L(Π)):

∆(Pstep , X) = {(vt, t
X

) | t ∈ Read(Π)} ∪∆(Π, X|L(Π))

The temporary variables are updated only once during the initialization,
then because the ASM is in norml form we have that ∆(Π, X|L(Π)) is consistent.

So Pstep is without overwrite, and because it is terminal according to the
lemma 1.16 we have:

∆(Pstep , X) = Pstep(X)	X

From these two equalities, we obtain that:

(Pstep(X)	X)|L(Π) = ∆(Π, X|L(Π))

3.2 Translation of the Complexity

Pstep simulates in constant time one step of the ASM program Π, so we want
to repeat it “enough”’ to simulate every execution of the ASM. In this paper
we focus on the polynomial time algorithms, so we assume that there exists a
polynomial function ϕΠ such that for every initial state X:

time(Π, X) ≤ ϕΠ(|X|)

Because ϕΠ is a polynomial function, there exists coefficients a0, . . . , adeg(ϕΠ) ∈
Z such that:

ϕΠ(|X|) =
∑

0≤n≤deg(ϕΠ)

an|X|n ≤

 ∑
0≤n≤deg(ϕΠ)

max (0, an)

 |X|deg(ϕΠ)

So there exists c ∈ N depending only of ϕΠ such that:

time(Π, X) ≤ c× |X|deg(ϕΠ)

And the following program has an execution time greater than Π onX, where
c and size are fresh variables initialized respectively with

∑
0≤n≤deg(ϕΠ)

max (0, an)
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and |X|1:
loop c

loop size
. . . deg(ϕΠ) times

loop size

Notice that according to the definition 1.21 p.16, the depth of this program
is deg(ϕΠ).

The intuitive program to repeat Pstep is :

loop c
loop size

. . .

loop size
Pstep

But between two executions of Pstep the number of steps depends of the
actual depth in the program, so the simulation will not have a constant temporal
dilatation. We want the program to execute one step of a loop then to execute
Pstep , then to execute another step of a loop and so on... So, we need to
duplicate2 Pstep before each body of a loop (case where the execution enter
inside a loop) and after each loop command (case where the execution erase a
loop):

loop c
Pstep

loop size
Pstep

. . .

loop size
Pstep

Pstep

. .
.

Pstep

Pstep

In fact, our candidate is loop c {Pstep ; loopdeg(ϕΠ) size {Pstep}};Pstep where
loopi n {P} is defined by induction:

loop0 n {P} =def end

loopi+1 n {P} =def loop n {P ; loopi n {P}};P

Actually the temporal dilatation is d = tΠ+1 because the program alternates
between loop commands and execution of Pstep . But we can’t ensure that the

1↑ Préciser au début que nous supposons avoir accès à |X|.
2↑ Like in [APV10], with the difference that we choose to have each execution of Pstep

after each command and not before. This will make sense when we will add one occurrence
of Pstep before the program to initialize the µ-formula FΠ.
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program stops at the same time than Π, so we need to detect the end of the
execution.

Notation. The µ-formula1 of Π is defined by:

FΠ =def

∧
t∈Read(Π)

vt = t

In Pstep the temporary variables ~vt store the value of the terms ~t read by Π,
then the terms ~t are updated in the block corresponding to the current state.
So, after each execution of Pstep , the ~vt have the old values of the terms, and
the terms ~t have the new values. So, if ~vt = ~t for all terms in Read(Π) then
the new values are equal to the old values, so the program had not updated the
symbols, so the ASM has stopped:

Lemma 3.4 (µ-formula).

time(Π, X|L(Π)) = min{i ∈ N | FΠ
P i+1

step (X)
= true}

Proof. Remind that:

time(A,X0) =def

{
min{i ∈ N | τ iA(X0) = τ i+1

A (X0)} if ~X is terminal
∞ else

The two sides of:

τ iΠ(X|L(Π)) = τ i+1
Π (X|L(Π))⇔ FΠ

P i+1
step (X)

= true

are proven in [?] and [FI].

So, the current candidate to simulate the ASM program Π is the program:

loop c except FΠ

if ¬FΠ {Pstep}
loop N except FΠ

if ¬FΠ {Pstep}
. . .

loop N except FΠ

if ¬FΠ {Pstep}
if ¬FΠ {Pstep}

. .
.

if ¬FΠ {Pstep}
if ¬FΠ {Pstep}

The temporal dilatation becomes d = tΠ + 2 because entering in the condi-
tionals costs one step more. But there are two problems remaining:

1↑ We choose this name because this formula is extremely similar to the µ-schema of the
recursive functions, see our paper [Mar15] for a version with while commands.
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1. Actually the program cannot evaluate properly the first µ-formula FΠ be-
cause the temporary variables have not been initialized yet. But notice
that FΠ becomes true after time(Π, X|L(Π)) + 1 steps. So we add an
occurrence of Pstep at the beginning of the program, and after this initial-
ization there will be exactly time(Π, X|L(Π)) + 1 repetitions of Pstep until
FΠ becomes true.

2. The simulation is correct until FΠ becomes true, and after that the re-
maining steps consist to erase the last loop commands. Because their
number depends of the current depth, determined by the initial state, we
cannot set a constant ending time for the simulation. But the number of
remaining loop commands is bounded by deg(ϕΠ)+1, so the current end-
ing time can be bounded too. In fact, for each remaining loop commands
two steps are done: erase the loop then erase the following if F {Pstep},
so the ending time is bounded by max end = 2× (deg(ϕΠ) + 1).

Using a fresh variable iend counting the number of steps done after FΠ

became true, we can add at the end of the program the program skip iend →
max end

1 defined by:

skip i→ 0 =def end

skip i→ m+ 1 =def if i = m+ 1 {end} else {skip i→ m}; end

For all state X, we can prove by induction on 0 ≤ iend
X ≤ max end

X that:

time(skip iend → maxend, X) = max end
X − iend

X
+ 1

It remains to set the correct value for iend . This variable is initialized
to 0 and for each remaining loop commands three steps are done: erase the
loop, enter the if and update iend . So, we replace each if ¬FΠ {Pstep} by
if ¬FΠ {Pstep} else {iend := iend+3; end}, and now max end = 3× (deg(ϕΠ)+
1).

3.3 The Simulation

For each ASM program Π we obtain at the figure 11 p.36 its translation PΠ

simulating the execution of Π:

Theorem 3.5. LoopCstat simulates ASMPol .

Proof. Remind that our simulation p.11 requires three conditions:

1. L(PΠ) = L(Π) t {vt | t ∈ Read(Π)} t {c, size, iend}
So there is a number of fresh variables depending only of Π.

1↑ maxend does not depend of the initial state so we can use constructors for it and define
skip i→ m by induction on m. We cannot do that for c because contrary to the conditional
which accepts terms, the loop commands can only be bounded by a variable.
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Pstep

loop c except FΠ

if ¬FΠ {Pstep} else {iend := iend + 3; end}
loop N except FΠ

if ¬FΠ {Pstep} else {iend := iend + 3; end}
. . . deg(ϕΠ) times

loop N except FΠ

if ¬FΠ {Pstep} else {iend := iend + 3; end}
if ¬FΠ {Pstep} else {iend := iend + 3; end}

. .
.

deg(ϕΠ) times
if ¬FΠ {Pstep} else {iend := iend + 3; end}

if ¬FΠ {Pstep} else {iend := iend + 3; end}
skip iend → maxend

Figure 11: Translation PΠ of the ASM program Π

2. Until FΠ becomes true the execution alternates between:

a. tΠ steps of Pstep , simulating one step of Π according to the proposi-
tion 3.3 p.30.

b. One step to enter in the body of a loop, or erase a loop command.

c. One step to enter in the conditional if ¬FΠ {Pstep}, then back to a.

So, each step of Π is simulated by exactly d = tΠ + 2 steps of its trans-
lation PΠ.

Moreover, the execution is long enough because if c and size are initialized
respectively with

∑
0≤n≤deg(ϕΠ)

max (0, an) and |X0| in an initial state X0

then:
time(Π, X) ≤ cX0 × (size

X0
)deg(ϕΠ)

Notice that c and size are never updated, so this inequality holds for every
state of the execution. Moreover, because c does not depend of the chosen
initial state we have, according to the definition 1.21 p.16:

depth(PΠ) = deg(ϕΠ)

3. So, time(Π, X|L(Π)) repetitions of these three steps simulate the ASM
program. Then, according to the lemma 3.4 p.34, tΠ more steps for the
last iteration of Pstep make FΠ true1.

Then, until skip iend → maxend is reached, the execution alternates be-
tween:

1↑ Even if time(Π, X|L(Π)) = 0, in which case this is the initial Pstep which will execute
all the steps.
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a. One step to erase a loop command.

b. One step to enter in the else part of the conditional if ¬FΠ.

c. One step of iend := iend + 3, then back to a.

Because the variable iend is initialized to 0, when skip iend → maxend is

reached at the state Xfinal the value iend
Xfinal

is the number of steps done since

FΠ is true. Then max end
Xfinal − iend

Xfinal
+ 1 steps are made by skip iend →

maxend. So, the ending time is:

e = tΠ + iend
Xfinal

+ max end
Xfinal − iend

Xfinal
+ 1 = tΠ + max end

Xfinal + 1

So e = tΠ + 3× (deg(ϕΠ) + 1) + 1

4 Conclusion and Discussion

Theorem. LoopCstat ' AlgoPol .

Proof. According to the theorem 10 p.9 Algo = ASM, so we need to prove that
LoopCstat ' ASMPol .

According to the theorem 2.13 p.26 ASM simulates LoopC.
But according to the proposition 1.22 p.17, the programs of LoopCstat are in

polynomial time, such that deg(ϕP ) = depth(P ). So ASMPol simulates LoopCstat.
According to the theorem 3.5 p.35 LoopCstat simulates ASMPol , such that

depth(PΠ) = deg(ϕΠ).
So, according to our definition of the simulation p.?? LoopCstat ' AlgoPol .

Morevoer, the degree of the complexity is the depth p.16 of the program.

In other words, because the programs of LoopCstat are in polynomial time,
and LoopCstat ' AlgoPol , we have that LoopCstat is algorithmically com-
plete.

From the programmer’s point of view :

• It’s easy to test the practical complexities the degree of the polynom which
is readable directly from the program.

• But LoopCstat is not fully compositional. Indeed, in P1;P2, we must verify
that the inputs of P2 are not outputs of P1.

• And moreover, it’s difficult to program in LoopCstat because the complexity
must be anticipated before writing the program.

But remind that LoopCstat does not need constraints on data structures to
be polytime, unlike LoopCneer . To have the better of the two worlds, it would be
nice to construct an intermediary language, between LoopCstat and LoopCneer .
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